Key Distribution

- An important part of encryption is key management
 - Sender and receiver need the same key

 \[\text{How can sender and receiver agree on a key?} \]

 \[\text{If the key is compromised how can two distant parties agree on a new key?} \]

 - Secret key encryption is especially vulnerable

- Need methods for distribution keys reliably
Quantum Cryptography

- We know one-time-pad is provably secure, but it has problems
 What?

- Quantum cryptography *may* provide a plausible one-time-pad
- Based on the fact light comes from photons
- Light from a polarized filter is polarized in the filter’s axis
- If second filter applied, intensity after second filter is proportional to cosine of axis angles
 What does this have to do with cameras? Or Jellybeans?

Generating a One-Time Pad

- Alice has two sets of polarizing filters (four filters total)
 - **Rectilinear basis** consists of a vertical and a horizontal filter
 \[
 \begin{array}{c}
 \vert \\
 \end{array}
 \begin{array}{c}
 _ \\
 \end{array}
 \]
 - **Diagonal basis** is the same except rotated 45 degrees
 \[
 \begin{array}{c}
 \diagup \\
 \end{array}
 \begin{array}{c}
 \diagdown \\
 \end{array}
 \]
 - *Bob has the same sets of filters*
- Alice assigns 0 or 1 to each filter in each set
 - Rectilinear basis: \[
 \begin{array}{c}
 \vert \\
 \end{array}
 \begin{array}{c}
 _ \\
 \end{array}
 \] is 0, \[
 \begin{array}{c}
 _ \\
 \end{array}
 \begin{array}{c}
 \vert \\
 \end{array}
 \] is 1
 - Diagonal basis: \[
 \begin{array}{c}
 \diagup \\
 \end{array}
 \begin{array}{c}
 \diagdown \\
 \end{array}
 \] is 0, \[
 \begin{array}{c}
 \diagdown \\
 \end{array}
 \begin{array}{c}
 \diagup \\
 \end{array}
 \] is 1
- Alice generates a one-time pad, for example using a RNG
 Oh crap....
• Alice sends the one-time pad using from the two basis at random
 – One photon polarized for the bit she wants to transmit

<table>
<thead>
<tr>
<th>Bit number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(e)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f)</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>?</td>
<td>1</td>
<td>x</td>
<td>?</td>
<td>?</td>
<td>0</td>
<td>x</td>
<td>?</td>
<td>x</td>
</tr>
</tbody>
</table>

- What Alice sends
- Bob's bases
- What Bob gets
- Correct basis?
- One-time pad
- Trudy's bases
- Trudy's pad

• Bob does not know which bases, randomly picks one per photon
 – If he picks correct, then he gets the correct bit
 – If he pick incorrectly, then the photon jumps to his filter or the polarization perpendicular \(\text{either way its wrong} \)
 – Therefore, some bits are correct while others are wrong

 \text{How does Bob know?}

• Bob tells Alice which bases he used, she tells which are right
 – This is done in plaintext \text{What about Trudy?}

 \text{The correct bits form the one-time pad}

• \text{Problem solved... which problem?}
Pioneering Public Key

- Key distribution has been the weak link in most cryptosystems
 - Stealing the key makes any system worthless
 - Keys must be protected from theft, yet available
- In the 1970’s, Ralph Merkle invented a secret key exchange system
 - Can be used over public lines
- First attempt at distributing keys, send a key database
 - Suppose Alice makes 1,000,000 secret keys
 - Stored in a database, each key has a serial number (identifier)
 - Alice sends Bob the database and tells the serial number to use for exchanging the secret key
 - Why isn’t this secure?

- Second attempt, send an encrypted key database (key and number)
 - Alice encrypts the database tells the encryption method
 - Bob is forced to crack the database
 - Once cracked, Bob tells Alice the serial number to use to exchange the secret key
 - Is this secure, at least more secure?

- Third attempt, send database with keys separately encrypted
 - Alice encrypts each key in the database separately
 - Bob cracks one key then tells Alice the serial number
 - Once cracked, Bob tells the serial number to use
 - Is this secure, at least more secure?
Public Key Algorithms

- In 1976 two researchers at Stanford (Diffie and Hellman) proposed a radical new cryptosystem
 - Encryption and decryption keys are different
 - What about all the methods described to-date?
 - The decryption key could not be derived from encryption key
 - The encryption key can be made public while the decryption key is held private (hence the name public key encryption)
- The catch will be to find algorithms to support this behavior

How would it work?, assume two people Alice and Bob
- Alice’s key k_{pub} would be made public, while her private key k_{pri} is kept secret
- If Bob needed to send a secret message to Alice then
 $$e_{k_{pub}}(p) = c$$
- Once c received by Alice, she computes
 $$d_{k_{pri}}(c) = p$$

How would Alice send a secret message to Bob?
RSA

- An early public key method was RSA
 - Developed developed by Rivest, Shamir, and Adleman in 1977
 - Most widely used public-key method
- System is a block cipher based on principles in number theory
 - Modular inverse and Fermat’s Little Theorem
- Following steps identify the keys
 1. Choose two large prime numbers\(^a\), \(p\) and \(q\)
 2. Compute \(n = p \times q\) and \(z = (p - 1) \times (q - 1)\)
 3. Choose a number relatively prime to \(z\) and call it \(d\)
 4. Find \(e\) such that \(e \times d \pmod{z} = 1\)

\(^a\)Yo, we typically use \(p\) to represent "plaintext" but we’ll use \(m\) to represent "plaintext" or "message". The variable \(p\) will be used to represent a prime number. I hope this serves to confuse you. Thank You – Management

- For example...
 1. Let \(p = 7\) and \(q = 17\) (should be much larger than this...)
 2. \(n = 7 \times 17 = 119\) and \(z = (7 - 1) \times (17 - 1) = 96\)
 3. Choose \(d\) relatively prime to \(96\), \(d = 5\) works
 4. Find \(e\) such that \((e \times 5) \pmod{96} = 1\), \(e = 77\) works

\[77 \times 5 = 385 = 4 \times 96 + 1\]

- Given these numbers divide the plaintext into blocks, \(0 \leq m < n\) (therefore the message must be positive and less than \(n\))
 - To encrypt \(c = m^e \pmod{n}\)
 - To decrypt \(m = c^d \pmod{n}\)
 - Public key is \([e, n]\) and the private key is \([d, n]\)
• For example, assume the message is 9 (therefore, \(m = 9 \))

 – Encrypted \(e = 9^5 \pmod{119} = 25 \)

 – Decrypted \(m = 25^{77} \pmod{119} = 9 \)

• Another example, public key is \([3, 33]\) and the private key is \([7, 33]\)

<table>
<thead>
<tr>
<th>Message (m)</th>
<th>Ciphertext (c)</th>
<th>After decryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbolic</td>
<td>Numeric</td>
<td>(m^2)</td>
</tr>
<tr>
<td>S</td>
<td>19</td>
<td>6859</td>
</tr>
<tr>
<td>U</td>
<td>21</td>
<td>9261</td>
</tr>
<tr>
<td>Z</td>
<td>26</td>
<td>17576</td>
</tr>
<tr>
<td>A</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>2744</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>2744</td>
</tr>
<tr>
<td>E</td>
<td>05</td>
<td>125</td>
</tr>
</tbody>
</table>

– Since the primes are so small, each cipher block can only be a single character (less than 33)

RSA Security

• Security is based on the difficulty of factoring large numbers

 – Assume the attacker could factor \(n \) (which is public)

 – Then could find \(p \) and \(q \), and then \(z \)

 – With \(z \) and \(e \), \(d \) can be found using Euclid’s algorithm

• Fortunately, factoring large numbers is difficult...

 – Rivest states that factoring a 200 digit number requires 4 billion years of computer time

 – As computers become faster, just use larger \(p \) and \(q \) values

 What is an alternative attack on factoring?

Early versions of Netscape were insecure although they used RSA, why?
Some Background for RSA

• Fermat discovered that given a prime p and any positive integer m

$$m^{p-1} \pmod{p} = 1$$

– For example if $m = 7$ and $p = 11$, then

$$7^{11-1} \pmod{11} = 7^{10} \pmod{11} = 1$$

• Euler discovered a similar relationship, if p and q are primes, then let

$$n = p \cdot q$$

$$m^{(p-1)(q-1)} \pmod{n} = 1$$

Note, m and n must also be relatively prime

– For example if $m = 38$, $p = 11$, and $q = 5$, then $n = p \cdot q = 55$ and

$(p-1)(q-1) = 40$, then

$$38^{40} \pmod{55} = 1$$

• Let’s change Euler’s rule by multiplying both sides by m,

$$m^{(p-1)(q-1)+1} \pmod{n} = m$$

– So we can raise an integer m to the power $[(p-1)(q-1) + 1]$, then modulo n and get m back
Why RSA works... Kinda

- Consider encrypting a message \(m \),
 - Select two prime numbers \(p \) and \(q \)
 - Find two relatively prime numbers \(e \) and \(d \) such that
 \[e \cdot d = (p - 1)(q - 1) + 1 \]
 - Encrypt, \(m^e \pmod{n} = c \)
 - Decrypt, \(c^d \pmod{n} = m \)

- Why does this work? Decrypting \(c \) can be rewritten as
 \[c^d \pmod{n} = (m^e)^d \pmod{n} = m^{e \cdot d} \pmod{n} \]
 recall \(e \cdot d = (p - 1)(q - 1) + 1 \), so let’s substitute
 \[m^{(p-1)(q-1)+1} \pmod{n} = m \]
 based on Euler’s discovery (well kinda, I did take a shortcut or two)

RSA Security

<table>
<thead>
<tr>
<th>What the attacker wants to do</th>
<th>How to accomplish it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find (m)</td>
<td>Must know (d)</td>
</tr>
<tr>
<td>Find (d)</td>
<td>Must know (e) and ((p - 1)(q - 1))</td>
</tr>
<tr>
<td>(e) is known, so find ((p - 1)(q - 1))</td>
<td>Must know (p) and (q)</td>
</tr>
<tr>
<td>Find (p) and (q)</td>
<td>Must factor (n)</td>
</tr>
</tbody>
</table>

- Security is based on the difficulty of factoring \(n \), a large number
Other Public-Key Algorithms

- The first public key algorithm was by Merkle and Hellman, 1978
 - Owner has a large number of objects, each with a weight
 - Owner encodes the message by selecting a set of objects
 - Total weight and the complete list of objects made public

 What is this based on?

- Merkle thought the system was secure and offered $100 to break
 - Shamir broke it, became $100 richer

- Merkle made changes offered $1000 to break
 - Rivest broke it, became $1000 richer

Management of Public Keys

- An important question is *how do you obtain public keys?*

Publish on your web-site?

```
1. GET Bob's home page
2. Fake home page with $E_T$
3. $E_T$(Message)
4. $E_T$(Message)
```

What about a dedicated key distribution center?
Certificate Authority

- Certificate Authority (CA) does not distribute keys
 - Certifies the public key belongs to people, companies, etc...

- Assume Pluf wants others to communicate with him securely
 - Pluf goes to the CA with his public key, passport, etc...
 - CA issues certificate, signed with private key and hashed

```
I hereby certify that the public key 1999AB8FE303857393CAB9478294
belongs to Nirre Pluf, 932 Manchester Hall, Winston-Salem, NC 27109
SHA-2 hash of the above signed with the CA’s private key
```

- Pluf posts the certificate on his web-site

What is the difference? The advantage?

X.509

- X.509 is a standard format for certificates
 - Approved by the ITU and adopted by the IETF (RFC 3280)

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Which version of X.509</td>
</tr>
<tr>
<td>Serial number</td>
<td>This number plus the CA’s name uniquely identifies the certificate</td>
</tr>
<tr>
<td>Signature alg.</td>
<td>The algorithm used to sign the certificate</td>
</tr>
<tr>
<td>Issuer</td>
<td>X.500 name of the CA</td>
</tr>
<tr>
<td>Validity period</td>
<td>The starting and ending times of the validity period</td>
</tr>
<tr>
<td>Subject name</td>
<td>The entity whose key is being certified</td>
</tr>
<tr>
<td>Public key</td>
<td>The subject’s public key and the ID of the algorithm using it</td>
</tr>
<tr>
<td>Issuer ID</td>
<td>An optional ID uniquely identifying the certificate’s issuer</td>
</tr>
<tr>
<td>Subject ID</td>
<td>An optional ID uniquely identifying the certificate’s subject</td>
</tr>
<tr>
<td>Extensions</td>
<td>Many extensions have been defined</td>
</tr>
<tr>
<td>Signature</td>
<td>The certificate’s signature (signed by the CA’s private key)</td>
</tr>
</tbody>
</table>
Public Key Infrastructure

- PKI consists of components required for public key distribution
 - Assume **trust anchors** exist and known in advance
 What are the trust anchors?

 - Several models exist to provide a scalable and secure solution

- **Monopoly model**
 - Only one CA and everyone knows the public key What are the advantages and disadvantages?

- **Monopoly plus Registration Authorities (RA)**
 - CA selects other organizations as RA’s to check identities and obtain/vouch for public keys What is the advantage over a monopoly? Disadvantages?

- **Oligarchy** *(currently used by browsers)*
 - There is a set of trust anchors, can be added and deleted
 What is the advantage and disadvantages?

- **Anarchy** *(currently used by PGP)*
 - Users are responsible for configuring trust anchors How?

 - Some web-sites have databases you can deposite certificates
 What is the advantage over a monopoly? Disadvantages?
Hierarchical PKI

- Use a hierarchy of Regional Authorities (RA) and CA’s
 - Root authorizes RA, who authorize CA’s

- Suppose Alice needed Bob’s public key
 - She gets a certificate signed by CA-5, contains Bob’s key
 - Alice does not know CA-5 and asks for credentials

 - CA-5 responds with certificate signed by RA-2
 - CA-5 certificate contains CA-5’s public key

 So what? What can she verify? Is Alice any better off?

 What if she does not know RA-2?

 What about root’s public key?

- The hierarchy forms a chain of trust or certification path
PKI Directories

• Another issue is where the certificates are stored

• Have each user store his or her certificate?
 What are the advantages and disadvantages?

• Have DNS store certificates?
 What are the advantages and disadvantages?

PKI Revocation

• There may be a reason to revoke a certificate
 Give an example?

• CA can periodically issue a Certificate Revocation List (CRL)
 – Certificates have expiration, so the list may not be too long
 What are some other issues with using a CRL?

 How are CRL managed?

 What is a reasonable certificate lifetime?
PKI Risks

- PKI seems like a reasonable solution for security
 - Appears to be a scalable approach
- Carl Ellison and Bruce Schneier have described risks of PKI
 - Can you really trust the CA, and for what?
 - How to protect the private key?
 - Can you verify the root keys?
 - How do you know you are requesting the right certificate?

What is the common theme to these (and other) concerns?

Diffie-Hellman Key Exchange

- Let’s go back to secret-key cipher
 - Assume that Alice and Bob need to transmit messages
 - Furthermore, assume a secret key has not been established
 - A key exchange technique is needed...
- Diffie-Hellman exchange allows strangers to establish a key
 - Uses similar mathematical principles as RSA
- The exchange algorithm is
 - Alice and Bob agree on two large prime numbers n and g
 - Where $\frac{n-1}{2}$ is also prime (other conditions apply to g)
 - These numbers (n and g) can be public
 - Alice now picks a random number x and keeps it secret
 - Bob does the same, pick a secret random y
Alice starts the exchange by sending Bob \([n, g, g^x \pmod{n}]\)

Bob responds to Alice by sending \([g^y \pmod{n}]\)

Alice then calculates \((g^y \pmod{n})^x \pmod{n}\)

Similarly Bob calculates \((g^x \pmod{n})^y \pmod{n}\)

Both operations yield \(g^{xy} \pmod{n}\), which is the secret key

- Of course Trudy has seen all the messages
 - She knows \(g\) and \(n\)
 - But she cannot determine \(x\) and \(y\), no practical algorithm exists for computing discrete logarithms modulo on large primes...

- Example key exchange
 - Assume \(n = 47\) and \(g = 3\)
 - Alice picks \(x = 8\) and Bob picks \(y = 10\), both are secret
 - Alice computes \(3^8 \pmod{47} = 28\) and sends \([47, 3, 28]\)
 - Bob sends Alice \([17]\)
 - Alice computes \(17^8 \pmod{47} = 4\)
 - Bob computes \(28^{10} \pmod{47} = 4\)
 - Therefore the secret key is 4 (OK, it’s a bit small...)

- Trudy has seen all the messages
 - Must solve the equation \(3^x \pmod{47} = 28\) (from Alice’s first message)
 - If she determines \(x = 8\), she can then compute \(17^8 \pmod{47} = 4\)
 - Values are so small, just use exhaustive search for \(x\), therefore you should use large numbers...
Trudy’s Revenge

- Despite the elegance of Diffie-Hellman, there is a problem
 - Bob receives the $[47, 3, 28]$, how does he know it’s from Alice?

- Assume Trudy can intercept the messages from Bob and Alice

 - While Alice and Bob are selecting their x and y, Trudy selects z
 - Alice sends first message 1 to Bob
 - Trudy intercepts, sends Bob message 2 with her z
 - Trudy then sends Alice message 3 with her z
 - Trudy intercepts message 4

 - Now everyone does the modular arithmetic
 - Alice computes $g^{xz} \pmod n$, so does Trudy for messages to Alice
 - Bob computes $g^{yz} \pmod n$, so does Trudy for messages to Bob

 How does Trudy use these keys?

- This is called the bucket brigade attack or the (wo)man-in-the-middle attack
 - Similar to a hijack attack
Steganography

- There are two general methods for transmitting secrets
 - Cryptography - Info scrambled and reconstituted using a key
 - Stenography - Secret encoded in another message such that it is unseen by the casual user

- Steganography has been in use for many centuries
 - Greeks in 4th century BC
 - Francis Bacon and Shakespeare
 - German microdot during WWII

- Steganography and the authorship of Shakespearean plays
 - Hidden texts have been found in Shakespearean plays
 - They point to Francis Bacon as the true author of the plays

Steganography and Digital Media

- Recently steganography has seen a revival
 - Digital media provides many opportunities to hide info
 - Digital media typically has an accuracy greater than necessary
 - Can downgrade and make room for secrete information
 - Examples include images, music, and video

What about executables?

- Consider an image that consists of a matrix of pixels
 - Assume each pixel is 24 bits (8 for red, green, and blue)
 - Use two Least Significant Bits (LSB) of each color
 - This would provide 9 bits of information per pixel
- The resulting image is downgraded (distorted)

- Other steganography methods exist
 - Frequency encoding
 - Adding information in media header, PS for example

```
%!PS
% Creator: Adobe Illustrator(TM) 5.0
%For: (Al Pierno) (Hadel Studio)
```

- TCP/IP headers, not all the bits are used

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version</td>
<td>Type of service</td>
<td>Total length</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>[0][1] Fragment offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time to live</td>
<td>Protocol</td>
<td>Header checksum</td>
</tr>
<tr>
<td></td>
<td>Source address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Destination address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Options (0 or more words)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Disk fragmentation

- Discovering hidden data
 - Very difficult without the original media

Steganography can be used legitimately, give an example.