Chapter 3

Dynamic Search Algorithm, DSA+

Network managers seek to provide QoS to users through the proper allocation of resources. The allocation should be as efficient as possible, which signifies reduced resource amounts as well as few renegotiations. Reducing the allocation amount provides higher utilization of resources, while reducing the number of renegotiations lessens the signaling strain on the network. Users are also interested in efficient allocations, since resources are expected to have costs associated with them (volume and renegotiation). In the previous chapter a review of different bandwidth allocation techniques was provided. Of the different approaches presented, on-line methods are the most versatile. On-line methods have the ability to determine the appropriate bandwidth amounts with limited a priori information; therefore, these methods are appropriate for stored or live media. Yet, few on-line methods attempt to reduce the allocation amount as well as the number of renegotiations.

In this chapter a single-user, on-line allocation method called the Dynamic Search Algorithm (DSA+) is presented [40]. DSA+ allocates resources to meet a desired QoS. In this thesis, DSA+ is used to allocate link bandwidth in order to provide a desired Cell Loss Probability (CLP). DSA+ has the advantages of other on-line allocation methods; however, it is unique because it attempts to reduce the number of renegotiations and can manage link bandwidth for VBR sources. In the experimental section, DSA+ is used to control the loss rate of simulated traffic and actual MPEG-compressed videos by the appropriate allocation of link bandwidth. Other on-line and o-line algorithms were also implemented
and their performance is compared and contrasted. The simulation results will show that DSA+ performs better than the other allocation methods, allocating less bandwidth with fewer renegotiations. Since ease of algorithm use is important, the robustness of DSA+ with respect to the initial parameter settings is demonstrated. Finally, the application of DSA+ for connection admission control and multiple hop allocation is investigated.

3.1 Dynamic Algorithms

Dynamic algorithms (also referred to as adaptive algorithms) have been applied in various applications such as system identification, filtering and pattern recognition [4]. The general idea is to dynamically adjust a vector towards some desired goal. The vector is changed as the behavior of the system is monitored using state information at certain instances of time. The state vector must adequately represent the information on which the adjustment is made. The conventional rule [4] used to update the vector is

\[\theta_n = \theta_{n-1} + \gamma \times H(\theta_{n-1}, X_n) \quad (3.1) \]

where \(\theta_n \) is the vector to control, \(\gamma \) is a series of gains and \(H(\cdot) \) is a function that determines how \(\theta_n \) is updated based upon the state vector \(X_n \). When applied to resource allocation it is possible to have \(\theta_n \) represent a resource, \(X_n \) the source state, \(\gamma \) the gain and \(H(\cdot) \) would be some function that defines how the resource amount is changed with respect to the source state. This general formula is used in Hsu’s algorithm, REQS and the DSA+ algorithm introduced in the next section. In [4] Benveniste, et al. a proof of convergence for dynamic algorithms is described. This can be used to prove convergence for other specific dynamic algorithm applications, as done in [43].

3.2 A New Dynamic Allocation Technique

This section introduces an on-line allocation technique called Dynamic Search Algorithm (DSA+). DSA+ encapsulates the general dynamic algorithm form with new features to better handle VBR sources. DSA+ dynamically renegotiates the server rate
(bandwidth) of a queue in order to meet a desired QoS. The algorithm will seek to reduce the bandwidth required to provide the desired QoS, as well as the number of renegotiations.

3.2.1 System Model

Figure 3.1, depicts the system model under consideration. Cells, a fixed-length unit of traffic storage and transmission, arrive at a finite capacity queue and are serviced in a FIFO manner. All cells will receive the same amount of service, as described by the ATM standard. As seen in figure 3.1, any cell arriving at a full queue is immediately lost. In this thesis the QoS of interest is the cell loss probability (CLP) of a single source. Cell arrivals to and losses from this queue are monitored throughout the duration of the application and rate changes are renegotiated at discrete instances of time. Denote the nth renegotiation instant as t_n, and the interval between renegotiation points t_n and t_{n+1} as the nth update interval, U_n. The service rate during U_n is constant and is denoted as μ_n.

During the nth interval, let the number of arrivals be represented by A_n and the number of losses as L_n. The CLP of the nth interval is then calculated as $P_n = L_n/A_n$. The cumulative CLP of all the intervals up to and including the nth is

$$P_{0...n} = \frac{\sum_{i=0}^{n} L_i}{\sum_{i=0}^{n} A_i}$$

Figure 3.1: System model for server rate allocation.
The CLP desired by the user is denoted Q_l. The goal of DSA+ is to adjust the server rate, so to provide the desired CLP, Q_l, as efficiently as possible with few renegotiations. Secondary goals are simplicity of implementation and robustness.

3.2.2 Dynamic Search Algorithm (DSA+)

At each renegotiation point DSA+ adjusts the server rate according to the following formula:

$$
\mu_{n+1} \leftarrow \mu_n + \frac{K}{\alpha} \times \ln \left(\frac{P_n}{Q_l} \right), \quad \alpha = \begin{cases}
1 & \text{if } P_n > Q_l \\
2 & \text{if } P_n \leq Q_l
\end{cases}
$$

This dynamic algorithm updates the server rate, μ_n, based on the observed CLP during the nth interval. This measurement along with the desired CLP value, Q_l, are then used in the error function $\ln(P_n/Q_l)$. This non-linear error function provides either a positive or negative feedback value based on the observation taken during the most recent interval. Note the feedback becomes smaller as the measured CLP approaches the desired value, keeping the rate at a more stable value. The error function is also appropriate due to the very small loss rates that are normally desired. The constant K amplifies the response of the error function and this product ultimately determines how much the server rate can be increased or decreased. Parameter α allows the rate to be increased twice as fast as it can be decreased. This is done since, in an actual network, resources are more easily reduced than increased.

Algorithm 3.1 shows the complete DSA+ algorithm at one renegotiation instant t_n. As seen in the algorithm, the renegotiation interval is lengthened (doubled) in two cases (lines 4 and 7). The interval is doubled on line 4 if the cumulative CLP $P_{0\ldots n}$ is worse than required and if the CLP during the most recent interval P_n is better than required. This will reduce the cumulative CLP towards the desired value, since the nth CLP is better than the desired CLP. The interval is doubled on line 7 when P_n and P_{n-1} are on different sides of (one greater than, the other less than) the desired CLP. Doubling the interval length also reduces the number of renegotiations required over time, a feature common to both DSA+ and REQS [84].
Algorithm 3.1 DSA+ algorithm for adjusting the server rate to achieve a desired CLP.

1: curr_error $\leftarrow \ln(P_n/Q_l)$ /* current error */
2: prev_error $\leftarrow \ln(P_{n-1}/Q_l)$ /* previous error */
3: if $P_{0\ldots n} > Q_l$ AND $P_n \leq Q_l$ then
4: $U_{n+1} \leftarrow 2 \times U_n$
5: else
6: if curr_error \times prev_error ≤ 0 then
7: $U_{n+1} \leftarrow 2 \times U_n$
8: end if
9: if $P_n > Q_l$ then
10: $\mu_{n+1} \leftarrow \mu_n + K \times \ln(P_n/Q_l)$
11: else
12: $\mu_{n+1} \leftarrow \mu_n + \frac{K}{2} \times \ln(P_n/Q_l)$
13: end if
14: end if

As mentioned in the introduction, traffic sources such as MPEG-compressed video are complex due to their bursty and unpredictable behavior. A potential problem with the algorithm as shown is that the traffic characteristics may change drastically during a renegotiation interval, while the server rate cannot be renegotiated. This can lead to excessive QoS violations. Interrupts are used to reduce the severity of this problem. At fixed-length sub-intervals, called an interrupt interval I, an interrupt is generated if both P_n and $P_{0\ldots n}$ are greater than the desired loss rate Q_l. The relationship between update and interrupt intervals can be seen in figure 3.2. In this case, the server rate is increased immediately according to equation 3.2, rather than waiting until the end of the renegotiation interval. The renegotiation interval itself, however, is not changed by an interrupt. The use of interrupts allows DSA+ to be more responsive to sudden, severe traffic changes, which should occur infrequently. This is a unique and key element of DSA+.

Initially the user must assign the following values: initial renegotiation interval U_0, interrupt sub-interval I, constant K and the initial server rate μ_0. U_0, I, and K may depend on the source traffic, but their selection primarily impacts the number of renegotiations and the efficiency of the allocation. Initial variable selection is addressed in section 3.3.4.
Figure 3.2: DSA+ time axis for updates and interrupts.

3.3 Experimental Results

In this section the performance of DSA+ and other allocation techniques is investigated using simulated traffic and actual MPEG-compressed traffic. For each experiment the system described in section 3.2 was simulated. The desired QoS was a CLP of \(1 \times 10^{-3}\) and the queue capacity was 80 ATM cells (48 byte payload) [84]. While the targeted QoS was cell loss probability, the queue size was selected to provide a minimum cell delay as well. The minimum allowed bandwidth was 1 Mbps, therefore the maximum delay for any cell is 34 msec. This value was selected to provide a wide range of available bandwidths, however almost any combination of minimum bandwidth and queue size could have been chosen. A more restrictive bandwidth selection will only improve the performance of the algorithm.

Efficiently managing bandwidth is of interest; therefore, two performance metrics are used. First, the number of renegotiations required for the entire simulation. This value is important since a large number of renegotiations will cause considerable strain on the signaling system of the network. Second, the number of bits reserved to transmit the video, or equivalently, the area under the allocation curve for the duration of the video. This measurement is important because the video should be transmitted with few bits as possible while maintaining the desired QoS. Minimizing the bits used can help increase the utilization of the network by providing more resources to other users.
3.3.1 MMBP Sources

A two state Markov Modulated Bernoulli Process (MMBP) was selected for simulated traffic. This model was chosen because it typifies burstiness and the correlation of interarrival times, two important characteristics of ATM traffic [79]. For these experiments, the performance of DSA+ is compared to effective bandwidth and peak rate allocation. The effective bandwidth was calculated using the method described in [30], which was presented for MMPP sources. The method was extended for MMBP sources using techniques described in [56]. The effective bandwidth is an off-line calculation that yields the smallest rate which ensures a certain CLP. While the effective bandwidth technique requires complete source information and no renegotiations, its is presented here only as a possible lower bound allocation amount. This is certainly true if there are no renegotiations. Since DSA+ attempts to minimize the number of renegotiations, its allocation is expected to approach the effective bandwidth. The peak rate allocation is also given to provide an upper bound on the allocation amount. A dynamic technique should allocate less bandwidth than peak rate since peak rate will result in a zero losses. Consequently, the allocation amount of an efficient on-line method should fall below the upper bound and close to the lower bound.

The two state MMBP model is given in figure 3.3. Using this model, if the current state is S_0 the probability of remaining there is p and the probability of changing state is $1-p$. If the current state is S_1 the probability of remaining there is q and the probability of changing state is $1-q$. The cell arrival rates of state S_0 and S_1 are λ_0 and λ_1 respectively. More details about the MMBP model are presented in [79].

The parameters of the MMBP model were adjusted to vary two burstiness measurements. First, the rate of state S_0 was increased to magnify the squared coefficient of variation, C^2. The parameter settings and resulting C^2 values for these MMBP sources are
given in table 3.1. Second, the duration of state S_0 was lengthened to magnify the peak to mean ratio. The parameter setting for these MMBP sources are presented in table 3.3. For each experiment, separate and independent simulations were executed to provide averages and 95% confidence intervals. Experiments ran for 6000 simulated seconds and each data point represents 100 simulations. The initial DSA+ parameters for all the MMBP experiments were; 40 cells/second for K, and 0.5 seconds for both U_0 and I and the peak rate of the source for μ_0.

C² Experiments

The following experiments used the MMBP sources described in table 3.1 and were performed to show the effect of an increasing C^2 values (30 - 207). Table 3.2 shows the results of the C^2 experiments and figure 3.4 shows the average bandwidth allocation and cumulative CLP graphs for source 1. As seen in the table and graphs, DSA+ allocated slightly fewer bits than effective bandwidth (2.5% less) and achieved a lower CLP. The DSA+ allocation for each experiment had slightly larger confidence intervals at the beginning, since the algorithm is searching for the appropriate value. As the algorithm approached an allocation level which provided the desired QoS, the allocated amount stabilized and the confidence intervals reduced in size. This was evident for all the MMBP experiments. Since the peak rate allocation was no greater than 15% for any experiment, peak rate allocation can be considered an efficient allocation for these sources, only if its value is known in advance. DSA+ was able to provide a lower allocation amount and better QoS (lower CLP), than the effective bandwidth method, with no a priori information about the source.
Figure 3.4: Average allocation and cumulative CLP values for MMBP source 1.

Figure 3.5: Average bandwidth and cumulative CLP values for MMBP source 5.
Table 3.2: Allocation comparison for varying C^2 MMBP traffic.

<table>
<thead>
<tr>
<th>Source</th>
<th>DSA+</th>
<th>Effective Bandwidth</th>
<th>Peak Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Bits Used ($\times 10^9$ bits)</td>
<td>Bits Used ($\times 10^9$ bits)</td>
<td>Bits Used ($\times 10^9$ bits)</td>
</tr>
<tr>
<td>0</td>
<td>2.20</td>
<td>2.27</td>
<td>2.54</td>
</tr>
<tr>
<td>1</td>
<td>4.67</td>
<td>4.80</td>
<td>5.09</td>
</tr>
<tr>
<td>2</td>
<td>9.70</td>
<td>9.89</td>
<td>10.2</td>
</tr>
<tr>
<td>3</td>
<td>17.2</td>
<td>17.5</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Table 3.3: MMBP parameter values for peak-to-mean experiments.

<table>
<thead>
<tr>
<th>Source</th>
<th>S_0 State</th>
<th>S_1 State</th>
<th>Peak/Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Rate (cells/second)</td>
<td>Duration (second)</td>
<td>Mean Rate (cells/second)</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0.04</td>
<td>2.5×10^3</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.06</td>
<td>2.5×10^3</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0.08</td>
<td>2.5×10^3</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0.1</td>
<td>2.5×10^3</td>
</tr>
</tbody>
</table>

Peak-to-Mean Experiments

The following experiments used the MMBP sources described in table 3.3 and were performed to show the effect of an increasing peak to mean value (16 - 20). Table 3.4 shows the results of peak to mean experiments and figure 3.5 shows the average bandwidth allocation and cumulative CLP graphs for source 5. Similar to the C^2 experimental results, DSA+ was able to provide a slightly better QoS for each experiment. The number of bits reserved for transmission by DSA+ is consistently lower than the effective bandwidth allocated amount (an average of 6.75% less that effective bandwidth). In addition, there was a significant savings over peak rate allocation (an average of 94.5% less than peak rate allocation). Both sets of experiments indicate that DSA+ is able to efficiently manage the stationary traffic of various MMBP sources. The performance of DSA+ with non-stationary traffic is presented in the next section.
In this section the performance of DSA+ is investigated using fifteen MPEG-compressed videos. All traces were obtained from Oliver Rose at the University of Würzburg, Germany [89]. Each trace is a thirty minute segment of the original video and was encoded with constant quality using the same MPEG-1 encoder card. Relevant statistics of each video are presented in [40, 89]. As reported in [89], the Hurst parameters indicate all videos exhibit long-range dependency, and significant peak-to-mean ratios ranging from 18.4 to 4.63 based on average frames. Therefore it is evident that these are very difficult sources to regulate, and to date there has been no successful attempt to efficiently manage them on-line.

For each I, B or P MPEG frame, the equivalent number of ATM cells was determined. The cell arrival times were then uniformly distributed over the duration of the frame. This process was repeated for each frame until the end of the trace was reached. No smoothing, multiplexing, filtering or quantization changes of any kind were made to the videos. For this reason, these experiments can be considered to be a “hard-case” test of any on-line allocation technique.

As an example of the performance of DSA+, figure 3.6 shows the bandwidth allocation and cumulative CLP for the Simpsons video. In this experiment, the initial parameter settings are given in table 3.5. As seen in the figure, DSA+ quickly reduces the bandwidth allocated, until the cumulative CLP is approximately the desired value. Afterwards, when the measured CLP was worse than the desired value, the algorithm

Table 3.4: Allocation comparison for varying peak-to-mean MMBP traffic.

<table>
<thead>
<tr>
<th>Source</th>
<th>DSA+</th>
<th>Effective Bandwidth</th>
<th>Peak Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Bits Used</td>
<td>Bits Used</td>
<td>Bits Used</td>
</tr>
<tr>
<td></td>
<td>(×10^8 bits)</td>
<td>(×10^8 bits)</td>
<td>(×10^8 bits)</td>
</tr>
<tr>
<td>4</td>
<td>4.06</td>
<td>4.38</td>
<td>63.6</td>
</tr>
<tr>
<td>5</td>
<td>3.49</td>
<td>3.79</td>
<td>63.6</td>
</tr>
<tr>
<td>6</td>
<td>3.30</td>
<td>3.49</td>
<td>63.6</td>
</tr>
<tr>
<td>7</td>
<td>3.12</td>
<td>3.31</td>
<td>63.6</td>
</tr>
</tbody>
</table>

1 Traces can be obtained from the ftp site ftp-info3.informatik.uni-wuerzburg.de in the directory /pub/MPEG
Table 3.5: Initial settings of DSA+ parameters for MPEG-compressed videos.

<table>
<thead>
<tr>
<th>μ_0 (Mbps)</th>
<th>K (Kbps)</th>
<th>U_0 (second)</th>
<th>I (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>100</td>
<td>4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 3.6: DSA+ bandwidth allocation and cumulative CLP for the Simpsons video.

increased the rate with interrupts. The cumulative CLP graph shows that the algorithm is able to tightly control the bandwidth for the desired CLP. A total of 36 renegotiations were required, with approximately half occurring in the first 60 seconds. This is due to the high initial server rate; improvements can be obtained if the initial rate is less than the peak. Only sixteen of the renegotiations were for more bandwidth. This low number of renegotiations is due to doubling the update interval, as described in section 3.2.

3.3.3 Comparison with Other Allocation Techniques

In this section DSA+ is compared to other allocation techniques: peak rate, Hsu’s algorithm, and RED-VBR. The system described in section 3.2 was implemented and all fifteen MPEG videos were used as traffic sources. Again individual frames were split into
ATM cells as described in the previous section. No smoothing, multiplexing, filtering or quantization changes of any kind were made to the videos. DSA+ initial parameters, the same for each video, are given in table 3.5.

Peak Rate

Peak rate allocation was chosen since it is an accepted allocation method [55]. To determine the exact peak rate requires the trace in advance. For that reason, this is an off-line method. In a sense this comparison is unfair to the remaining on-line methods. An on-line peak rate algorithm would require an overestimation of the traffic by a significant percentage to be cautious. Another difference is that peak rate allocation would result in zero losses, while other methods were targeted for a loss rate of 1×10^{-3}. Small but non-zero losses are considered to be acceptable for typical multimedia applications. Instead of a weakness, the ability to manage QoS targets based upon the needs of the user should be considered a strength of any on-line algorithm. Other off-line methods, such as PCBR [13] or Feng’s algorithm [32], are not comparable, as they directly control the transmission of the source.

Hsu’s Algorithm

Hsu’s method is a dynamic algorithm which has been proven to find the minimum bandwidth required for a stationary MMBP source [43]. This method was chosen since it is a simple on-line method that requires minimal source information. The algorithm renegotiates bandwidth over fixed length intervals, using previous loss measurements and a simple difference error function. Initial parameters for this algorithm were 4.5 Mbps for the initial server rate, 1 second for the interval and 1 Mbps for c the constant. No method of parameter selection was presented in the original paper. The values used were found to be the best experimentally. It was also observed that the algorithm was very sensitive to parameter values. Small variations in the initial parameter values did result in over-allocation.
<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>MIN_RENEG_INTERVAL (seconds)</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.5</td>
<td>10</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 3.6: RED-VBR parameters.

RED-VBR

RED-VBR is a method for supporting VBR video, with an off-line or on-line allocation technique. For this comparison, the on-line version was implemented using a similar segmentation algorithm as presented in [104]. RED-VBR is based upon the D-BIND model [57]. This model consists of a set of rate-interval pairs, which characterize the source over various interval lengths. The allocation algorithm stores the currently reserved D-BIND parameters and calculates the D-BIND parameters for the last M frames. A renegotiation take place when a difference exists between the reserved and measured D-BIND parameters; more details are presented in [104]. RED-VBR does not use nor measure the QoS for allocation. QoS is an issue when sources are multiplexed together and is provided on a “per-segment” basis as described in [104]. As a comparison, only the renegotiation and allocation performance of this method will be considered. The initial parameters are given in table 3.6. The α and β values were taken from the original paper, while MIN_REGEN_INTERVAL, P and M were selected to reduce the number of renegotiations.

Comparison Results

Table 3.7 shows the performance of all the algorithms for each individual MPEG video as a source. Example allocation and cumulative CLP graphs for the Asterix video, seen in figure 3.7, are also given. The performance of each method is described next.

DSA+ was able to provide the desired QoS for each video, with significantly fewer bits than the peak rate. Saving of 21 - 61% were observed over peak rate. The average number of renegotiations required was 36.2 and only 44% of the renegotiations were requests for more bandwidth. Bandwidth increases averaged 189 Kbps.
Hsu’s algorithm was not able to provide the desired QoS for the Goldfinger, News and Lambs videos. This method also over-allocated bandwidth (more than the actual peak) for the Formula 1 Race, Mr. Bean, News, Simpsons, Super Bowl and Talk videos. This was a result of an over-allocation early in the trace, from which the algorithm was unable to reduce the bandwidth quickly enough. Placing bounds on the highest bandwidth allocated (peak) reduces this effect, but it requires the knowledge of the value a priori. Another difficulty with this method was the number of renegotiations. The algorithm uses constant intervals to renegotiate the bandwidth. Consequently, renegotiating every second would place a significant burden on the network’s signaling system.

RED-VBR was able to provide the desired QoS for each video with CLP values ranging from zero to 2×10^{-4}. Fewer bits than peak allocation (11 - 52% less) were used, but the algorithm required a large number of renegotiations. On average 284 renegotiations were performed, with 56% being for more bandwidth. As seen in figure 3.7, these increases were large, averaging 575 Kbps. The calculation of D-BIND parameters may also be problematic since it is done for each frame.

Overall DSA+ performed better than the other algorithms. It always required fewer bits for transmission than the peak, and on average less than the other on-line methods, while still providing the desired CLP. The significant savings was in the number of renegotiations. The algorithm required no more than 52 renegotiations and on average only 44% were for more resources. The number can be further reduced with a lower initial bandwidth value, as discussed in the next section. On average Hsu’s algorithm required 47 times more renegotiations, while RED-VBR required 8 times as many. The magnitude of increases were relatively small, 189 Kbps, while RED-VBR increased three times as much. DSA+ also has the advantage of a simple algorithm that does not require large amounts of processing time.

3.3.4 Robustness and Appropriate Parameter Selection

As described in section 3.2, four initial parameters must be specified in order to use DSA+: the initial server rate μ_0, the first renegotiation interval U_0, the rate adjustment coefficient K, and the interrupt sub-interval I. A capable dynamic allocation method
<table>
<thead>
<tr>
<th>Video</th>
<th>DSA+</th>
<th>Hsu's</th>
<th>RED-VBR</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.R.</td>
<td>Bits Used (×10^9 bits)</td>
<td>N.R.</td>
<td>Bits Used (×10^9 bits)</td>
</tr>
<tr>
<td>Asterix</td>
<td>30</td>
<td>3.63</td>
<td>1666</td>
<td>3.50</td>
</tr>
<tr>
<td>ATP Tennis</td>
<td>30</td>
<td>5.68</td>
<td>1666</td>
<td>5.33</td>
</tr>
<tr>
<td>Formula 1 Race</td>
<td>25</td>
<td>5.87</td>
<td>1666</td>
<td>8.72</td>
</tr>
<tr>
<td>Goldfinger</td>
<td>47</td>
<td>5.11</td>
<td>1666</td>
<td>4.81</td>
</tr>
<tr>
<td>Jurassic Park</td>
<td>39</td>
<td>3.12</td>
<td>1666</td>
<td>2.75</td>
</tr>
<tr>
<td>Movie Review</td>
<td>35</td>
<td>4.38</td>
<td>1666</td>
<td>3.79</td>
</tr>
<tr>
<td>Mr. Bean</td>
<td>52</td>
<td>3.89</td>
<td>1666</td>
<td>13.1</td>
</tr>
<tr>
<td>MTV</td>
<td>44</td>
<td>6.72</td>
<td>1666</td>
<td>5.00</td>
</tr>
<tr>
<td>News</td>
<td>28</td>
<td>4.73</td>
<td>1313</td>
<td>9.73</td>
</tr>
<tr>
<td>Lambs</td>
<td>46</td>
<td>3.10</td>
<td>1666</td>
<td>2.46</td>
</tr>
<tr>
<td>Simpsons</td>
<td>36</td>
<td>4.56</td>
<td>1666</td>
<td>13.7</td>
</tr>
<tr>
<td>Soccer</td>
<td>25</td>
<td>6.53</td>
<td>1666</td>
<td>5.56</td>
</tr>
<tr>
<td>Super Bowl</td>
<td>34</td>
<td>4.25</td>
<td>1666</td>
<td>13.1</td>
</tr>
<tr>
<td>Talk</td>
<td>37</td>
<td>2.44</td>
<td>1666</td>
<td>14.6</td>
</tr>
<tr>
<td>Terminator</td>
<td>38</td>
<td>1.75</td>
<td>1666</td>
<td>1.44</td>
</tr>
<tr>
<td>Average</td>
<td>36.5</td>
<td>4.38</td>
<td>1666</td>
<td>7.17</td>
</tr>
</tbody>
</table>

Legend: N.R. = number of renegotiations

Table 3.7: Single-user allocation comparison.
should be relatively insensitive to the initial parameter values, so user insight into these parameters is not a requirement. Four experiments were performed to investigate whether this was the case. For each experiment, the parameters were set to a particular value and the behavior of DSA+ was simulated for all 15 videos. Then, the average number of bits and number of renegotiations per video were calculated. The system described in section 3.2 was simulated and the desired CLP for each experiment was 1×10^{-3}. Minimizing the number of renegotiations as well as the amount of bandwidth allocated is of interest. Yet, improving one value may result in a negative effect on the other. For example, a higher number of renegotiations can result in a more efficient allocation, since the algorithm can closely follow the arrival pattern of the source.

Figure 3.8 shows the effect of varying the initial parameters individually. It was observed that the coefficient K, did not significantly impact the number of renegotiations, but values over 350 Kbps did increase the number of bits used. In general, for MPEG videos smaller K values (100 - 350 Kbps) are better, since the additional number of renegotiations is not significant compared to the savings in bandwidth. The initial server rate does impact both the number of renegotiations and the bits used. Small initial server rates (less than half peak rate) have fewer renegotiations, but allocate more bits. This is a result of interrupts
occuring early in the trace. Large initial server rates (more than 75% peak rate) cause more renegotiations but fewer bits used. The higher number of renegotiations is the effect of reducing the rate more slowly than it can be increased (see equation 3.2). Generally, larger initial bandwidths are better due to the savings in bits used. However, like any renegotiation method, the better the initial rate guess, the better the performance. The intervals, U_0 and I, have some impact on performance; however their values should be set in accordance to the desired CLP. For example, a more stringent CLP would need a smaller interrupt interval to prevent excessive losses during an interval. Overall DSA+ is robust to initial parameter settings. It can accept a variety of values and still provide the desired QoS. Like any method of resource allocation, a priori information can help guide the initial parameter selection; however it is not a necessity.

3.3.5 Multiplexing

In this section, the ability of DSA+ to allocate bandwidth for multiplexed MPEG videos is examined. The motivation for this experiment is the use of DSA+ for connection admission control. An admission control technique could simply use DSA+ to predict bandwidth usage of the current sessions. Subtracting this value from the total amount would provide a quick and accurate measure of the remaining resources available. For this experiment, DSA+ was used to manage a multiplex stream of fifteen different MPEG videos. The QoS provided to the multiplexed stream is an aggregate value, thus individual guarantees are not provided. The performance was then compared to the summation of bandwidth from controlling each video independently, as in section 3.2. Each multiplexed video was randomly started at frame x, where x was uniformly distributed between the start and end frame. The frames of each video were then added together to create one multiplexed video stream. This multiplexed stream had a peak rate of 17.2 Mbps and mean rate of 7.61 Mbps, yielding a peak to mean ratio of 2.26. The stream was then broken into ATM cells in the same manner as described in section 3.3.2. The cells then arrived at a FIFO queue (80 cell capacity), where any cell encountering a full queue was immediately lost. The desired CLP was 1×10^{-3}. Multiplexing is expected to reduce burstiness and LRD behavior [81]; thus a multiplexed source should be easier to manage.
Figure 3.8: Measuring the impact of the initial DSA+ parameters.
Figure 3.9: DSA+ bandwidth allocation and cumulative CLP for the multiplexed stream.

Figure 3.9 shows the allocation and cumulative CLP of the DSA+ managed multiplexed stream and the summed individual DSA+ managed streams. As noted in the figure, significant savings occurs from managing the multiplexed stream. Savings of 15% over peak and 66% over the summed individual streams were observed. The primary source of savings (over controlling each video individually) is from multiplexing. Multiplexing smoothes the stream, reducing burstiness and LRD. The result is a source that is “well-behaved” as compared to the individual videos. The number of renegotiations for the multiplexed stream is 67 as compared to 546 total renegotiations for the individual videos. Over half of the renegotiations for the multiplexed stream occurred in the first two minutes.

3.3.6 Multiple Hop Allocation

In the previous sections, DSA+ has only been used for controlling the QoS of a single hop. In this section the application of DSA+ for a multiple hop connection is investigated. For these experiments four nodes are connected in series. The nodes are interconnected with 155 Mbps links, each measuring 50 meters in length. Each node consists of an adjustable rate server and finite capacity FIFO queue (80 ATM cells) as described in section 3.2. Each MPEG-video was segmented as described in section 3.3.2. The stream
Figure 3.10: Multiple hop connection with each-node DSA+ implementation.

entered the network at node zero and proceeded forward until node three was reached. For these experiments the desired QoS is an end-to-end cell loss probability of 1×10^{-3}. Two implementations of DSA+ were investigated: each-node and first-node.

The each-node implementation requires each node to run DSA+ separately and independently, as seen in figure 3.10. The end-to-end CLP was divided evenly among the nodes resulting in a target CLP of 2.5×10^{-4} per node. If each node provides this CLP, the end-to-end CLP would be the desired 1×10^{-3}. The end-to-end QoS could have been divided differently, perhaps based on the current condition of the individual nodes. The remaining DSA+ initial parameters were identical for each node and are given in table 3.5. One primary advantage to the strategy is that no inter-node algorithm communication is necessary, thus eliminating any need for algorithm control packets.

First-node implementation only requires the first node of the connection to run DSA+, as seen in figure 3.11. The initial DSA+ parameters are given in table 3.5. The first node controls the bandwidth for all the remaining downstream nodes. The first node has a CLP of 1×10^{-3}, therefore the remaining nodes can have zero losses. When a renegotiation occurs at the first node a control packet, containing the new bandwidth value, is sent downstream. Once a downstream nodes receives the bandwidth control packet it must immediately renegotiate to this value then forward it downstream. The control packets are sent on another reliable connection, as done in many communication protocols [99]. Only transmission and propagation delays were factored for the control packets.
Table 3.8 shows the total number of bits (summation of the bits reserved for the four nodes) reserved by each method. Figures 3.12 and 3.13 show the allocation and observed CLP for the Talk video of each-node and first-node respectively. For the each-node method, downstream nodes required less bandwidth. This was evident for all the each-node experiments performed. This is primarily due to a reshaping effect each node has on the traffic. As the traffic passes through a node some fluctuations in the arrival stream are removed due to the storage and transmission, resulting in a less bursty departure stream. Downstream nodes benefit from this effect, resulting in a lower bandwidth allocation (1 - 47% less than the first node). However, the first node implementation consistently reserved fewer total bits, as seen in table 3.8; yet this implementation requires the overhead of inter-node algorithm communication.

Either implementation of DSA+ for end-to-end QoS showed promising results. The each-node arrangement provided the end-to-end QoS with no inter-node algorithm communication overhead, yet there are a few disadvantages. One disadvantage is that this method requires more bits as seen in the table. This is primarily due to the more stringent QoS required at each node, especially the first node. Another disadvantage is dividing the QoS among the individual nodes. This may be problematic if either there is a large number of nodes and/or if the end-to-end QoS is very stringent. For example, if the end-to-end CLP was 1×10^{-6} in for a 10 node connection, each node would have an individual CLP of 1×10^{-7}. This individual CLP value may be too small for any type of on-line method. One possible solution could include the use of importance sampling or restart [61]. First-node implementation does not have the disadvantage of individual QoS requirements, but
Table 3.8: Multiple-hop each-node and first-node DSA+ allocation comparison.

it does require more support for inter-node algorithm communication. It is possible that both methods could be combined to lessen the effects of both disadvantages.

3.4 Chapter Summary

This chapter introduced an on-line algorithm, called Dynamic Search Algorithm (DSA+), that determines the resource allocation amount for a desired QoS. This chapter focused on providing a desired cell loss probability by allocating link bandwidth. DSA+ attempts to reduce the bandwidth amount as well as the number of renegotiations required with limited a priori source information. To date no other on-line method is able to reduce the number of renegotiations required for MPEG sources. Furthermore, DSA+ has a simple implementation requiring $O(1)$ processing time and storage.

Experimental results demonstrated the capability of DSA+ to allocate link bandwidth to provide a desire cell loss probability for simulated and actual MPEG compressed video. MPEG compressed video is an especially difficult source to manage since its behavior
Figure 3.12: Four node connection, each running DSA+ independently (each-node implementation).

Figure 3.13: Four node connection, only first node running DSA+ and controlling all allocation (first-node implementation).
can be described as bursty and unpredictable. For the MPEG experiments fifteen actual MPEG traces were collected and used. As compared to an off-line peak-rate allocation, DSA+ saved 13–58% in bandwidth. On average 36 renegotiations were required, but only 44% were for more bandwidth, which seems acceptably low. Other methods which were compared, either over-allocated bandwidth or required up to 47 times more renegotiations.

Multiple hop connection allocation was also addressed. In this case a connection of four nodes was simulated to evaluate the performance of DSA+ for end-to-end CLP. Two implementations were investigated; each-node and first-node. Both methods were able to provide the end-to-end QoS, however each method may suffer from some possible disadvantages.

This chapter presented a method for allocating resources for a single user. However, the network manager must also consider the allocation requirements of all users in the network. In this multi-user environment, contention can occur for the limited network resources. For this reason, the network should allocate resources to all users in an efficient and fair manner. Multi-user allocation techniques are presented in the next chapter.