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Abstract

Network firewalls remain the forefront defense for most computer systems. These critical
devices filter traffic by comparing arriving packets to a list of rules, or security policy, in a
sequential manner. Unfortunately packet filtering in this fashion can result in significant traffic
delays, which is problematic for applications that require strict Quality of Service (QoS) guar-
antees. Furthermore, as network speeds and capacities continue to increase, the processing time
associated with filtering only compounds these delays. Given this demanding environment, new
methods are needed to increase network firewall performance.

This paper introduces a new technique for representing a security policy in software that
maintains policy integrity and provides more efficient processing. The policy is represented as
an n-ary retrieval tree, also referred to as a trie. This structure is able to quickly reach decisions
based on the security policy by simultaneously eliminating multiple rules with few comparisons.
As a result, the worst case processing requirement for the policy trie is a fraction compared
a list representation, which only consider rules individually (1/5 the processing for TCP/IP
networks). Furthermore unlike other representations, the n-ary trie developed in this paper is
proven to maintain policy integrity. The creation of policy trie structures is discussed in detail
and their performance benefits are proven theoretically and validated empirically.

Keywords: Security management, firewalls, policy representation, and scalability.

1 Introduction

The benefits of highly interconnected computer networks have been accompanied by an increase in
network-based security attacks. To address these threats, firewalls, also referred to as packet filters,
have become a critical component of network security systems. Firewalls provide access control,
auditing, and traffic control based on a security policy by inspecting packets sent between networks
[3, 21]. The security policy is an ordered list of rules that defines an action to perform on arriving
or departing packets. When a packet arrives at the firewall it is sequentially compared against
the rules until a match is found [21]. This is referred to as a first-match policy and is used in the
majority of firewall systems including the Linux firewall implementation iptables [17]. Once the
match is determined the associated action is performed and the packet is either accepted or denied.

∗This work was supported by the U.S. Department of Energy MICS (grant DE-FG02-03ER25581). The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the DOE or the U.S. Government.
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Firewalls are often implemented as a dedicated machine, similar to a router. Unfortunately,
packet filtering requires a significantly higher amount of processing time than routing [16, 19].
Processing time increases as rule sets increase in length and complexity [4, 15]. As a result, a
firewall in a high-speed environment (e.g. Gigabit Ethernet) can easily become a bottleneck and
is susceptible to DoS attacks [4, 8, 11, 12]. These attacks merely inundate firewalls with traffic,
delaying or preventing legitimate packets from being processed. Methods of improving firewall
performance are needed for the next generation of high-speed networks and security threats.

Improving hardware is one method for increasing the amount of traffic a firewall can process.
Current research is investigating different distributed firewall designs to reduce processing delay
[4, 15] and possibly provide service differentiation [10]. While performance can increase using these
methods, it requires multiple machines and/or specialized hardware. As a result these improvements
are not amenable to legacy systems and thus do not provide a solution to many systems.

Improving software is another method to increase firewall performance that is applicable to a
larger set of systems [5, 14, 16]. Similar to approaches that address the longest matching prefix
problem for packet classification [6, 7, 9, 17, 18], these solutions employ better policy representations
and searching algorithms. For example, retrieval trees (tries) offer quick search times and have
been utilized to decrease the packet processing time [16, 18]. These policy models use the classical
definition of a trie structure, which is a variation of a binary tree [1]. While this method groups
rules in an efficient manner, the firewall tuples are stored in a binary format (one bit per branch)
that increases the processing overhead and is difficult to implement (ultimately requiring a grid of
binary tries) [7]. Furthermore, these binary trie structures are designed to determine the longest
matching prefix, which results in the best-match rule (not typically used in network firewalls). As
described in [18] first-match is possible, however it requires additional information and comparisons
to rank possible rules, which is not required by the representation described in this paper.

In contrast, Directed Acyclical Graphs (DAG’s) were used to store packet header fields (multibit
field) in [6]. This structure was shown to efficiently store filter rules for layer four switching.
However as described in section 3 of this paper, the DAG structure is unable to maintain integrity
if partial-matching rules exist; thus, severely limiting its application to firewalls. Trees have also
been successfully used to model firewall policies in [2, 13]; however, the primary purpose of this
research was locating rule conflicts and anomalies, not improving processing time.

This paper introduces a new security policy representation called a policy trie, that is readily
implemented and significantly reduces the packet processing time. Rules are represented as an
ordered set of tuples, maintaining precedence relationships among rules and ensuring policy integrity
(policy trie and list always arrive at the same result). The policy is modeled as an n-ary retrieval
tree (trie), uniquely combining the retrieval efficiency of a trie and the flexibility of an n-ary tree.

When the policy trie is created rules are grouped by tuples (parts of the rule), allowing the
elimination of multiple rules as a packet is processed and the trie is traversed. This is in contrast to
the traditional list representation that can only consider one rule at a time. As a result, it will be
proven that the policy trie has a worst case performance that is a fraction of a list representation
(1/k, where k is the number of tuples). Furthermore unlike other representations, the policy
trie maintains policy integrity; therefore this structure can easily and effectively represent current
security policies. These theoretical results are verified via simulation under realistic conditions.

The remainder of this paper is organized as follows: Section 2 describes the models for firewall
rules and a standard (list-based) security policy. The new policy representation called a policy trie
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Source Destination
No. Proto. IP Port IP Port Action
1 TCP 140.* * 130.* 20 accept
2 TCP 140.* * * 80 accept
3 TCP 150.* * 120.* 90 accept
4 UDP 150.* * * 3030 accept
5 * * * * * deny

Table 1: Example TCP/IP security policy consisting of multiple ordered rules.

is introduced in section 3. Methods for creating and searching the policy trie, and proofs for policy
integrity and performance bounds are also presented. Storage requirements for the representations
are described in section 4. The performance of the policy trie is investigated experimentally under
realistic conditions in section 5. Finally, section 6 summarizes the policy trie representation and
discusses some areas of future research.

2 Firewall Security Policies

As previously described, a firewall security policy has been traditionally defined as an ordered list
of firewall rules [21], as seen in table 1. A rule r can be viewed as an ordered tuple of sets [20], for
example rule r = (r[1], r[2], ..., r[k]). Each tuple r[l] can be fully specified or contain wildcards ‘*’
in standard prefix format. For example the prefix 192.* would represent any IP address that has
192 as the first dotted-decimal number. For TCP/IP networks, rules are represented as a 5-tuple
as seen in table 1. The tuples for TCP/IP are: protocol, IP source address, source port number,
IP destination address, and destination port number. Order is necessary among the tuples since
comparing rules and packets requires the comparison of corresponding tuples. In addition to the
prefixes, each firewall rule has an action, which is to accept or deny. An accept action passes the
packet into or from the secure network, while deny causes the packet to be discarded. Using the
rule definition, a standard security policy can be modeled as an ordered set (list) of n rules,
denoted as R = {r1, r2, ..., rn}.

Similar to a firewall rule, a packet (IP datagram) d can be viewed as an ordered k-tuple d =
(d[1], d[2], ..., d[k]); however, wildcards are not possible for any packet tuple. An arriving packet d
is sequentially compared against each rule ri starting with the first, until a match is found (d ⇒ ri)
then the associated action is performed. This is referred to as a first-match policy and is utilized
by the majority of firewall systems [17]. A match is found between a packet and rule when every
tuple of the packet is a proper subset of the corresponding tuple in the rule.

Definition Packet d matches ri if

d ⇒ ri iff d[l] ⊆ ri[l], l = 1, ..., k

For example the packet d = (TCP, 140.1.1.1, 90, 130.1.1.1, 20) would match the first
and the fifth rules in table 1. However using the first match policy, the packet would be accepted
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Source Destination
No. Proto. IP Port IP Port Action
1 TCP 140.* * 130.* 20 accept
2 TCP 140.* * * 80 accept
3 TCP 150.* * 120.* 90 accept
4 UDP 150.* * * 3030 accept
5 * * * * * deny
6 UDP 130.* * * * accept

Table 2: Example TCP/IP security policy where the the sixth rule is shadowed by the fifth rule. Such
anomalies are not considered in this paper.

since the first rule is the first match. Although the two rules match the same packet and have
different actions, it is important to note that this is not considered an anomaly.

Shadowing is a type of anomaly, which occurs when a rule ri+k matches a preceding rule ri,
thus rendering ri+k obsolete. For example, table 2 gives a policy where the sixth rule is shadowed
by the fifth(r6 ⇒ r5); thus, the new rule will never be utilized. Security policy anomaly detection
and correction is the subject of continued research [2, 13, 21] and is not the focus of this paper.
Therefore, this paper will assume such filter conflicts are not present in the security policies.

A security policy R is considered comprehensive if for every possible legal packet d a match is
found using R. The policy given in table 1 is comprehensive due to the last rule. Furthermore,
we will say two rule lists R and R′ are equivalent if for every possible legal packet d the same
action is performed by the two rule lists. This definition will be extended to include different policy
representations. As described in the introduction, this paper is interested in improving network
firewall performance. Firewall performance will be measured using the number of tuple-comparisons
required to find the first match. The worst case performance for a list-based representation is k · n
tuple-compares, which occurs when the last rule (default rule) is the first match.

3 A New Security Policy Representation

In this section a new security policy representation called the policy trie is introduced, which
provides faster processing of packets while maintaining the integrity of the original policy. The
policy trie T is a n-ary trie structure consisting of k levels that stores a security policy. Each level
T [l] corresponds to a rule tuple (except for the root), while nodes on a certain level store the tuple
values T [l, v]. Unlike the standard binary trie structure [1], the policy trie is unique since a node can
have multiple children, similar to an n-ary tree. This is required since a node will store a rule tuple
(multibit field), not just a single bit as done in [18]. Tuples at each level are organized from specific
to general (reading left to right). For reference, levels will be numbered sequentially starting with
zero for the root node. Likewise, nodes of a particular level will be numbered sequentially starting
with zero for the left-most node. Since each level stores a tuple, a path from the root node to a
leaf represents a firewall rule, as seen in figure 1.

To create a policy trie T , rules are added in the order they appear in R. A rule r is added to T
by starting with the root node on the first level and comparing the values of its children with the
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root

TCP UDP * protocol

140.* 150.* 150.* * source IP

* * * * source port

130.* * 120.* * * destination IP

20 80 90 3030 * destination port

accept accept accept accept deny action

r1 r2 r3 r4 r5

Figure 1: Policy trie representation of the firewall rules given in table 1.

corresponding tuple of r. If one of the children is equal (not just a subset) to the corresponding rule
tuple, then r will share this node and a new node is not added for this level. The trie is traversed
to that node and the process of comparing children to the rule is repeated using the next tuple
in r. If an exact match does not exist, a new child node is created that contains the value of the
corresponding packet tuple. In order to maintain the specific-to-general organization of the trie,
the new node is inserted in the rightmost available position such that it is before (to the left of)
any sibling that is a superset of the new node. The new node forms a chain of nodes that stores
the remaining tuple values of the rule.

Consider the events that occur when rule r2 is added to the trie given in figure 1. Rule r2 has
the same protocol, IP source, and source port values as r1; therefore, r2 will share these nodes.
Since the destination IP is different, this forms a chain consisting of this tuple, the destination
port, and action. This chain connects to the source port node, which adds r2 to the trie. It is
this structure that allows the elimination of multiple rules simultaneously. For example if a UDP
packet is compared using the trie given in figure 1, then rules r1, r2, and r3 are eliminated after
the protocol tuple comparison.

Once the new rule is added, if any nodes exist to the right of the new rule, then this represents
a rule re-order and may result in a shadowing. The intersection of the new rule and each of these
right-most rules is taken and the action of right rule, the rule that appears first in the ordered
policy, is applied.

Definition The intersection of rule ri and rj, denoted as ri ∩ rj is

ri ∩ rj = (ri[l] ∩ rj [l]), l = 1, ..., k

For all intersections that yield valid rules, the results form a subtree of the newly added rule. The
same method is applied to this subtree. For example consider the rules given in figure 2(a). Note
that the relative order of the rules must be preserved; otherwise integrity is not maintained. When
r2 is added to the policy trie, the source IP address will cause the rule to be placed before r1 and
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Source Destination
No. Proto. IP Port IP Port Action

1 UDP * 80 1.* 90 deny

2 UDP 1.* 80 * 90 accept

3 * * * * * deny

(a) Example rule list, where the rules must maintain
their relative order.

root

UDP *

1.* * *

80 80 *

1.* * 1.* *

90 90 90 *

deny accept deny deny

r1 ∩ r2 r2 r1 r3

(b) Policy trie that requires intersection of r1 and r2.

Figure 2: List and trie representation of a security policy where the policy trie requires the intersection
operation to maintain the integrity of the list.

the intersection must be taken. The intersection of r1 and r2 is (UDP, 1.*, 80, 1.*, 90). The
result of the intersection indicates a packet can match both rules, for example d = (UDP, 1.1.1.1,
80, 1.1.1.1, 90). Therefore this intersection rule, with the action of r1, must be added to the
trie. The final policy trie is given in figure 2(b), which maintains the integrity of the policy given in
2(a). When r3 is added, it is located to the right of r1 and r2, thus intersections are not performed.
In this example rules r1 and r2 are considered a partial-match [2]. The DAG policy representation
described in [6] will not correctly represent partial-match rules, because subsets (as done with the
match operation) are used to create the structure instead of intersections. As a result, the DAG
structure described in [6] is not suitable for firewall policies since integrity cannot be maintained.

To process a packet d using the policy trie T (also referred to as searching T ), the corresponding
tuple of the packet is compared with the children of the root node. Comparisons of nodes are
always performed from left and right, or specific to general. Once a match is found, the current
node is marked and the trie is traversed to the matching child. The procedure is repeated with
the remaining rule tuples. If no match is found, the search backtracks to the parent node and
finds the next matching node that has not been visited, continuing the process of left to right
comparison. Once a path has been found from the root node to a leaf where all the rule tuples
match (p[l] ⊆ T [l, i], l = 1, ..., k) the associated action is performed.

3.1 Policy Trie Integrity

As previously stated, a necessary objective of any policy representation is its ability to maintain
the policy integrity. This occurs if the new representation is equivalent to the original list-based
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policy. A policy trie T is equivalent to the original security policy R for any legal packet d, if
searches of T and R result in the same action being performed. Unlike other representations, this
is proven true in the following theorem.

Theorem 3.1 A policy trie T is equivalent to the original security policy R.

Proof Assume a trie T is constructed with k levels using the process previously described from an
n rule security policy (ordered list). Furthermore assume the completed trie is searched using the
previously described method. One of the following three cases will occur during the creation of the
trie.
Case 1 Rule reorder does not occur during creation. If rule reorders do not occur during the
creation of T , then rules will appear from left to right in T as they appear in R (an in-order
traversal of T yields R). As a result, the policy representations are equivalent because nodes are
tested from left to right.
Case 2 Rule reorders occur without intersections. Consider a trie T consisting of n − 1 rules from
R, which are added using the process previously described. In addition, let the n − 1 rules be
ordered in T as they are in R. Assume a new rule rn is added to T and is located to the left of an
existing rule rm. Let S be the set of rules that appear to the right of rn in T , S = {ri,m ≤ i < n}.
If the rules in S do not intersect with rn, then a packet cannot match both rn and any rule in S.
As a result, testing rn before any rule in S is not significant since shadowing is not introduced;
thus, the reorder does not effect policy integrity.
Case 3 Reorder and intersections occur during creation. Consider a trie T consisting of n− 1 rules
from R, which are added using the process previously described. In addition, let the n − 1 rules
be ordered in T as they are in R. Assume a new rule rn is added to T and is located to the left of
the existing rule rm. Let S be the set of rules that appear to right of rn in T , S = {ri,m ≤ i < n}.
Assume rn does intersect with rule ri in S. The intersection represents the set of packets that
match rn and ri, where the tuples of the intersection are the more specific of the two rules. There
must be at least one tuple in ri more specific than the corresponding tuple in rn, otherwise rn is
shadowed in the original rule list. The intersection rule will be located to the left of rn and have the
action of the ri. Therefore, the intersection rule will always be tested first, and if true the action
of the rule ri is applied. This is the correct response; therefore, the reorder will not affect integrity.

3.2 Push-Down Policy Tries

The policy trie as described thus far may require backtracking when a packet is processed (search
is performed). Backtracking searches can have a worst-case performance that is equal to a list
representation [16]. Although the penalty for backtracking in an n-ary trie is not as severe as
a standard binary version, the conversion to a non-backtracking trie can reduce the number of
tuple-compares, which is the objective of the representation.

A non-backtracking policy trie, referred to as a push-down policy trie, is created by replicating,
or pushing-down general rules in the original policy. A general rule is a superset of at least one
other rule in the policy, and is defined as a range of values, containing at least one wild-card in
the standard prefix notation. The push-down procedure replicates more general rules in subset
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root

TCP UDP *

140.* 150.* *
A 150.* *

B
*

C

* * * * * *

130.* * 120.* * * * * *

20 * 80 * 90 * * * 3030 * * *

accept deny accept deny accept deny deny deny accept deny deny deny

r1
r8 =

r7 ↓ r1
r2

r7 =
r6 ↓ r1

r3
r10 =
r9 ↓ r3

r9 =
r6 ↓ r1

r6 =
r5 ↓ r1

r4
r12 =

r11 ↓ r4

r11 =
r5 ↓ r4

r5

Figure 3: Push-down policy trie representation of the firewall rules given in table 1.

subtries, that would match the same packets as the general rule. As a result, the union of the
push-down rules is a proper subset of the original rule.

Definition The push-down of rule rg to rs, denoted as rg ↓ rs is

rg ↓ rs = (rs[1, .., l], rg [(l + 1), ..., k], rg [action])

where the rg[i] = rs[i], i = 1, ..., (l − 1) and l is the index of the first tuple of rs that is a subset of
the corresponding tuple in rg.

A general rule can only be pushed-down to rules that appear to left of it in the trie. Furthermore,
a non-backtracking policy trie is created when all general rules are pushed-down; therefore, rg ↓
rs,∀s < g. This can be easily implemented using a post-order traversal of the policy trie. Note that
while push-down always creates a rule that is more specific than the general rule being pushed, the
resulting rule may still be a superset of other rules in the policy trie, and thus must be pushed down.
For example, consider the push-down policy trie given in figure 3. When rule r5 is pushed-down to
rule r1 it creates rule r6. This is a general rule that is pushed-down again to rule r1 yielding r7.
This process repeats yielding r8, which cannot be pushed-down further.

As done with the original (backtracking) policy trie, we must be certain that the integrity of
the original policy is maintained when using a push-down policy trie. Theorem 3.2 proves that
push-down and original policy tries are equivalent. Therefore it can be stated that the push-down
policy trie maintains integrity since, the original policy trie can be proven to do so.

Theorem 3.2 A push-down policy trie Tp is equivalent to the original policy trie T , which is
equivalent to the original security policy R.

Proof Assume a push-down trie Tp is constructed with k levels from an n rule ordered list. Consider
node i on level l, Tp[l, i], that is part of rule rs. The children of node i include the children of siblings
(of node i) that appear to the right, if node i matches the sibling. Recall the push-down procedure
is recursive. If a tuple value is not present among the children of node i, the associated rule(s)
are not a possible alternative since node i is not a match. Furthermore, given the procedure for
constructing the push-down trie, the children are always ordered as they appear on the right. The
rules will be tested in Tp in the same order as T which is equivalent to R.
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3.3 Worst Case Analysis

As described in the previous section, the push-down policy trie offers a performance increase by
eliminating the need to traverse backwards. In this section, the worst case performance and storage
requirement of the push-down trie is analyzed theoretically. A primary objective of the policy trie
representation is to reduce the number of tuple-comparisons required per packet. Before this can
be done, two important lemmas about push-down policy tries are required.

Lemma 3.3 A node in a push-down policy trie cannot have more than n (the number of rules)
children.

Proof Every child of a node is unique, duplicates are not possible. If a node has n children then
all possible set values for the rule set are present for the tuple (each level represents a tuple). The
intersection and push-down operations never introduce a new set value for a tuple as the operations
create a new combination of tuple values; therefore, the result of the either operation would share
one of the existing children if the node already has n children.

Lemma 3.4 Each node traversal at a particular level in a push-down policy trie eliminates at least
one rule from consideration.

Proof Every child of a node must be unique, and every child value is an actual tuple value from
the rule set. Consider node i in the push-down trie. A rule that equals the value of node i
cannot also be a part of any other rightward sibling of node i without either duplicating the
node or violating the specific to general creation of the trie. This is evident since push-down and
intersection operations never result in a rule being replicated towards the right. Furthermore, new
push-down and intersection nodes are always located to the left of the leftmost node involved in
the operation. Combining the left-to-right property of the search with the non-backtracking nature
of the push down trie, it can be said the rule in question is eliminated from consideration.

The previous two lemmas provide important bounds on the structure of any push-down policy
trie. As a result, the worst case number of tuple-comparisons is O(n+k), which is proven in theorem
3.5. Comparing this bound with the worst case for a list-based representation, the push-down policy
trie requires a fraction (1/k) of the processing.

Theorem 3.5 A comprehensive push-down trie consisting of k levels and constructed from n rules
requires O(n + k) number of tuple-comparisons to match a packet in the worst case.

Proof We must always traverse every level of the trie (k tuple-compares) to determine the action.
Following from lemmas 3.3 and 3.4, we know that traversing a node eliminates at least one rule,
which would require n traversals in the worst case. As a result, the worst case number of tuple-
compares is k + n.
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root

r1 r2 r3

(a) Worst case push-down policy trie. Double circle
nodes are the result of push-down operations.

root

r1 r2 r3

(b) DAG representation. The dotted arrows replace
the push-down nodes.

Figure 4: Worst case push-down policy trie (r1 ⇒ r2, r1 ⇒ r3, and r2 ⇒ r3) and the DAG equivalent.
Assume the original security policy has three rules, where a rule has only three tuples.

4 Storage

This paper has focused on reducing the number of comparisons needed to determine the appropriate
match for a given packet and security policy; however, the amount of storage required for the
different policy representations is also important. Although the amount of storage required for a
trie would appear at first to be lower than a list, intersection and push-down operations do increase
the number of nodes in the push-down trie. This is evident in the number of nodes required for the
push-down trie depicted in figure 3 as compared to the original trie given in figure 1.

Given an n rule firewall policy, push-down causes the worst case storage requirement to occur
under two specific conditions. The first condition is ri ⇒ rj ,∀i < j < n, a rule matches all the rules
that appear to the right, maximizing the number of push-downs that occur. The second condition
is ri[l] �= rj[l],∀i < j < n, 1 ≤ l ≤ k; none of the tuples are equal and nodes are never shared. This
worst case is depicted in figure 4(a), where a 3 rule list requires 20 nodes in the push-down policy
trie. However, the number of nodes required by the trie can be greatly reduced by converting it
into a Directed Acycical Graph (DAG) [1, 16]. In the context of a DAG, the push-down operation
directly references nodes instead of replicating them as in the policy trie. For example, consider
the push-down trie given in figure 3. The parents of the nodes labeled A and B could point to the
node labeled C, which eliminates the need for new nodes for rules r6 and r11. The other push-down
rules can be replaced in a similar fashion. Similarly, the DAG equivalent of the push-down policy
trie given in figure 4(a) is depicted in figure 4(b) and requires significantly fewer nodes. The DAG
conversion causes the worst case push-down trie to only require k ·n tuples, which equals the storage
requirement for a list representation.

The intersection of two rules, required when rule reordering occurs, may also result in a new rule
(a new combination of existing tuples). The worst case policy would require the intersection among
all rules to result in a valid rule, where tuples of the new rule alternate between the two rules. In
addition, the rules would have to be listed according to the first tuple from most general to most
specific. In this situation, intersection operations result in chains that cannot be replaced by DAGs
and the worst case number of nodes required to store the policy trie would be O(n2). Although
this is a higher space requirement than the standard list representation, it only occurs under very
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Source Destination
No. IP IP Action
1 * 20.20.* accept
2 10.* 20.* drop
3 10.10.* * accept

Table 3: An abbreviated TCP/IP security policy that causes the worst case number of intersections.

specific circumstances. Furthermore, the significance of the additional space requirement is relative
to the frequency of the worst case packet(s).

Theorem 4.1 A policy trie will require O(n2) tuple storage in the worst case.

Proof Assume the values for tuples in policy R are proper subsets of each other. The maximum
number of intersections occur when the rules of policy R are ordered such that the values for the
first tuple appear from general to specific. Assuming the first level of the policy trie T stores the
first tuple in R, then T will store the rules in reverse order and the intersection of rule i must be
taken with rules i + 1 through n. Note, the values of at least one tuple must occur from specific
to general in R, otherwise shadowing occurs. Therefore, assume the values for the second tuple
in R are arranged from specific to general, while the values for the third tuples are arranged from
general to specific. Assume this alternating order occurs for the remaining tuples, as seen in table
3. As a result, the intersection operation creates a chain of tuples, where the chains cannot be
replaced with a DAG since it has a unique order of tuple values. The number of tuples required for
T is k ·n for the original rules and (k−1)

∑n−1
i=0 i for the intersections. Therefore, the total number

of tuples required in the worst case is k · n + (k − 1) · n · (n − 1)/2 ≈ O(n2)

5 Experimental Results

The previous section described a new network security policy representation called a policy trie that
was shown to provide theoretically better performance than the standard list-based representation.
Simulation results presented in this section will confirm the worst case number of tuple-comparisons
and show that similar performance gains are achieved in the average case. In addition, the average
and worst case storage requirements for the different policy representations are presented and will
be shown to also remain within their theoretical bounds.

Simulations were conducted using list, backtracking trie (original trie), and push-down trie
representations of firewall policies. A random rule generator was used to create valid rule sets with
a realistic degree of rule intersection. The generator was set to allow a slightly lower number of
tuple permutations at high levels (source, source port, etc.) so that the shape of resulting policy
tries would mirror those of real-world firewall rule sets. Policy sizes ranged from 50 rules to 500
rules, where 50 different policies were generated per policy size. Sets of 10,000 packets were passed
through representations of each policy and the resulting decisions made were validated against the
original rule set. Statistics concerning the average and worst case number of tuple-comparisons
were recorded as well as the amount of storage required for each policy representation
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Figure 5: The average and worst case number of tuple-comparisons required for the firewall experiments.
Push-down trie provided the best performance in both cases.

5.1 Tuple-Comparisons Results

Results for the tuple-comparisons are given in figure 5. As expected, when the policy sizes increased,
both trie representations always performed considerably better than the linear rule set. In all
cases, each representation reached the same decision, indicating that they were equivalent; thus
maintaining integrity. As seen in figure 5(a), the average performance for backtracking tries appears
to be similar to that of push-down tries. However, the backtracking trie required 5 times as many
comparisons on average than the push-down trie, while the original list required 34 times as many
tuple-comparisons on average.

The variance for the average number of comparisons in push-down tries was slightly lower than
that of backtracking tries. As a result, push-down tries sometimes performed significantly better
than their backtracking counterparts. Compared to linear implementations, the variance of trie-
based implementations was very low and relatively constant. The standard deviation of the average
number of comparisons in either trie implementation never rose above 20 per packet over 10,000
packets. Though this number may seem significant, the variance of linear policies averaged more
than 46 comparisons and sometimes ranged as high as 100 comparisons.

The worst case number of tuple-comparisons required by each representation is given in figure
5(b). Similar to the average case results, both trie representations out-performed the list repre-
sentation. Compared to the push-down trie the backtracking trie required 7 times as many of
tuple-comparisons to reach a decision in the worst case, while the list representation required 31
times as many. In addition, the performance of push-down tries and list representations were within
the theoretical bounds.
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Figure 6: The average and worst case number of tuple stored for the firewall experiments. Backtracking
trie required the least amount of storage in both cases.

5.2 Storage Results

The amount of storage required, measured in the number of tuples, is depicted in figure 6. As
predicted, when policy sizes increased the backtracking tries consistently used less (a third for these
experiments) of the storage required by the list representation. In contrast, the push-down tries
required the most storage. The push-down trie storage was nonlinear with respect to the number
of rules and on average required 10 times as much storage as the backtracking trie. Furthermore,
the variance of push-down tries averaged over 1,000 nodes, while the variance of backtracking tries
averaged less than 50 nodes. Although the push-down trie representation required the most storage,
the observed worst case requirement was well below the theoretical upper bound of n2, requiring
on average 92% fewer tuples.

The amount of storage required by both trie representations is directly related to the degree
of rule overlap. Backtracking tries benefit from rule overlap because overlap results in a greater
number of shared nodes. In contrast, the storage requirement for push-down tries improves when
there are fewer subset relations in a policy, since fewer push-down operations occur.

6 Conclusions

Network firewalls must continue to match, or exceed, the ever increasing speed and volume of
network traffic if they are to remain effective. Unfortunately, the traditional single machine fire-
wall that utilizes a list-based security policy can easily become overwhelmed in this environment.
Therefore, new methods to increase firewall performance are needed to meet the demands of the
next generation of networks and applications.

This paper introduced a new firewall security policy representation called the policy trie, that
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maintains policy integrity while requiring significantly less processing time. Rules are modeled
as an ordered set of tuples, allowing the precedence relationship between rules to be maintained.
The security policy is represented as an n-ary retrieval tree (trie), which combines the fast search
properties of a trie with the flexibility of a n-ary tree. The policy trie stores similar rules together,
which the allows the elimination of multiples rules as a packet is processed. This is in contrast to a
standard list-based representation, which can only consider rules individually. This yields a worst
case performance for the policy trie that is only 1/k of a list representation, where k is the number
of tuples in a rule. Furthermore unlike other representations, the policy trie maintains the integrity
of the original policy. The integrity and performance improvement of the policy trie was proven
theoretically and demonstrated using simulation under realistic conditions.

While the policy trie has shown great promise, more research is needed to evaluate its ability
to manage a dynamic policy. In many cases, rules must be added and removed over time to reflect
the current security status (for example, stateful firewalls used for connection tracking [21]). A
simple solution would just recreate the trie from the corresponding list-based policy once a rule
is removed. Another approach would tag rules if they are the result of intersection or push-down
operations, which allows their quick removal if the corresponding original rule is removed. Another
area of research would investigate the average performance of the firewall system. Possible methods
for improving the average case would involve sorting the trie nodes based on match probabilities
or reorganizing the tuple order of the trie. This must be done while maintaining the integrity of
the policy, which is not a trivial problem.
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Appendix: Policy Trie Operations

Two important policy trie operations are adding a new rule and searching. Both operations are
described in this section using a C++ pseudocode; therefore objects are used to represent a packet,
a firewall rule, and the policy trie (which consists of trie nodes). The rule and packet objects
referenced by the functions store tuples, while the data structure used for the policy trie object
is an n-ary retrieval tree (trie). Furthermore, the functions assume operator overloading has been
correctly implemented for the objects, which includes intersection.

As described in section 3, the process of adding a new rule to the policy trie requires maintaining
the integrity of the original rule list. As previously described, tuples are always stored from specific
to general. If this causes a rule to placed out of order, with respect to the original list, intersections
must be taken to maintain integrity. This process is given on the next page.
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1 void addRule(PolicyTrieNode∗ nPtr, Rule newRule, int tuple)
2 begin
3 match = false
4 for i = 0; i < nPtr→numChildren AND !match; i++
5 if newRule[tuple] == nPtr→child[i]→value then
6 match = true
7 if ( tuple + 1) < maxTuples then
8 addRule(nPtr→child[i], newRule, tuple + 1)
9 endif

10 endif
11 endfor
12

13 // add newRule (the remaining chain)
14 if !match AND tuple < maxTuples then
15 nPtr→child[nPtr→numChildren] = new PolicyTrieNode(newRule, tuple)
16 nPtr→numChildren++;
17 else
18 newRule already present ...
19 endif
20

21 // intersection with the right−most siblings
22 for ; i < nPtr→numChildren; i++
23 if match then
24 // intersect with rules containing this tuple
25 if c→child[i]→value ∩ newRule[tuple] != ∅ then
26 intersect (nPtr→child[i], newRule, tuple + 1)
27 endif
28 endif
29 endfor
30 end
31

32 void intersect (PolicyTrieNode∗ nPtr, Rule newRule, int tuple)
33 begin
34 for i = 0; i < nPtr→numChildren; i++
35 // intersect with rules containing this tuple
36 if c→child[i]→value ∩ newRule[tuple] �= ∅ then
37 intersect (c→child[i], newRule, tuple + 1)
38 endif
39 endfor
40 end

As described in section 3, searching the policy trie for the correct match can be done recur-
sively. The search is a left-to-right process, since tuples are stored from specific to general order.
The pseudocode for searching the policy trie is given on the next page.
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1 bool searchTrie (PolicyTrieNode∗ nPtr, Packet pkt, int tuple , RuleAction& action)
2 begin
3 if tuple > maxTuples then
4 action = nPtr→action
5 return true
6 endif
7 match = false
8 for i = 0; i < nPtr→numChildren AND !match; i++
9 if pkt[ tuple ] ⊆ nPtr→child[i]→value then

10 match = searchTrie(nPtr→child[i], pkt , tuple + 1)
11 endif
12 endfor
13 return match;
14 end
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