
Proceedings of the IEEE International Symposium on Computer Communications, 2005

Trie-Based Policy Representations for Network Firewalls∗

Errin W. Fulp and Stephen J. Tarsa
Wake Forest University

Department of Computer Science
Winston-Salem, NC, USA

nsg.cs.wfu.edu

{fulp|tarssj2}@wfu.edu

Abstract

Network firewalls remain the forefront defense for
most computer systems. These critical devices filter
traffic by comparing arriving packets to a list of rules,
or security policy, in a sequential manner. Unfor-
tunately packet filtering in this fashion can result in
significant traffic delays, which is problematic for ap-
plications that require strict Quality of Service (QoS)
guarantees. Given this demanding environment, new
methods are needed to increase network firewall perfor-
mance.

This paper introduces a new technique for represent-
ing a security policy that maintains policy integrity and
provides more efficient processing. The policy is repre-
sented as an n-ary retrieval tree, also referred to as
a trie. The worst case processing requirement for the
policy trie is a fraction compared a list representation,
which only considers rules individually (1/5 the pro-
cessing for TCP/IP networks). Furthermore unlike
other representations, the n-ary trie developed in this
paper can be proven to maintain policy integrity. The
creation of policy trie structures is discussed in detail
and their performance benefits are described theoreti-
cally and validated empirically.

1. Introduction

The benefits of highly interconnected computer
networks have been accompanied by an increase in
network-based security attacks. As a result, firewalls,

∗This work was supported by the U.S. Department of Energy
MICS (grant DE-FG02-03ER25581). The views and conclusions
contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the DOE or the U.S.
Government.

also referred to as packet filters, have become criti-
cal components of network security systems. Firewalls
provide access control, auditing, and traffic control
based on a security policy by inspecting packets sent
between networks [3, 23]. The security policy is an or-
dered list of rules that defines an action to perform on
arriving or departing packets. When a packet arrives
at the firewall it is sequentially compared against the
rules until a match is found [23]. This is referred to as
a first-match policy and is used in the majority of fire-
wall systems including the Linux firewall implementa-
tion iptables [19]. Once the match is determined the
associated action is performed and the packet is either
accepted or denied.

Firewalls are often implemented as a dedicated ma-
chine, similar to a router. Unfortunately, packet filter-
ing requires a significantly higher amount of processing
time than routing [18, 21]. Processing time increases as
rule sets increase in length and complexity [4, 17]. As a
result, a firewall in a high-speed environment (e.g. Gi-
gabit Ethernet) can easily become a bottleneck and is
susceptible to DoS attacks [4, 8, 13, 14]. These at-
tacks merely inundate firewalls with traffic, delaying
or preventing legitimate packets from being processed.
Methods of improving firewall performance are needed
for the next generation of high-speed networks and se-
curity threats.

Improving hardware is one method for increasing
the amount of traffic a firewall can process. Current
research is investigating different distributed firewall
designs to reduce processing delay [4, 17] and possibly
provide service differentiation [10]. While performance
can increase using these methods, it requires multi-
ple machines and/or specialized hardware. As a result
these improvements are not amenable to legacy systems
and thus do not provide a solution to many systems.

Improving software is another method to increase
firewall performance that is applicable to a larger set of

1

systems [5, 16, 18]. Similar to approaches that address
the longest matching prefix problem for packet classi-
fication [6, 7, 9, 19, 20], these solutions employ better
policy representations and searching algorithms. For
example, retrieval trees (tries) offer quick search times
and have been utilized to decrease the packet process-
ing time [18, 20]. These policy models use the classical
definition of a trie structure, which is a variation of
a binary tree [1]. While this method groups rules in
an efficient manner, the firewall tuples are stored in
a binary format (one bit per branch) that increases
the processing overhead and is difficult to implement
(ultimately requiring a grid of binary tries) [7]. Fur-
thermore, these binary trie structures are designed to
determine the longest matching prefix, which results
in the best-match rule (not typically used in network
firewalls). As described in [20] first-match is possible,
however it requires additional information and compar-
isons to rank possible rules.

Another representation used Directed Acyclical
Graphs (DAG’s) to store packet header fields (multibit
field) in [6]. This structure was shown to efficiently
store filter rules for layer four switching. However,
the DAG structure may have difficulty maintaining
integrity if partial-matching rules exist. Trees have
also been successfully used to model firewall policies
in [2, 15]; however, the primary purpose of this re-
search was locating rule conflicts and anomalies, not
improving processing time.

This paper introduces a new security policy rep-
resentation called a policy trie that is readily imple-
mented and significantly reduces the packet processing
time. Rules are represented as an ordered set of tuples,
maintaining precedence relationships among rules and
ensuring policy integrity (policy trie and list always ar-
rive at the same result). The policy is modeled as an
n-ary retrieval tree (trie), uniquely combining the re-
trieval efficiency of a trie and the flexibility of an n-ary
tree.

When the policy trie is created rules are grouped by
tuples (parts of the rule), allowing the elimination of
multiple rules as a packet is processed and the trie is
traversed. This is in contrast to the traditional list rep-
resentation that can only consider one rule at a time.
As a result, it will be proven that the policy trie has a
worst case performance that is a fraction of a list repre-
sentation (1/k, where k is the number of tuples). Fur-
thermore unlike other representations, the policy trie
maintains policy integrity; therefore this structure can
easily and effectively represent current security policies.
These theoretical results are verified via simulation un-
der realistic conditions.

The remainder of this paper is organized as follows:

Source Destination
No. Proto. IP Port IP Port Action

1 TCP 140.* * 130.* 20 accept

2 TCP 140.* * * 80 accept

3 TCP 150.* * 120.* 90 accept

4 UDP 150.* * * 3030 accept

5 * * * * * deny

Table 1. Example TCP/IP security policy con-
sisting of multiple ordered rules.

Section 2 describes the models for firewall rules and a
standard (list-based) security policy. The new policy
representation called a policy trie is introduced in sec-
tion 3. Methods for creating and searching the policy
trie, and proofs for policy integrity and performance
are described. Detailed proofs are provided in [12].
The performance of the policy trie is investigated ex-
perimentally under realistic conditions in section 4. Fi-
nally, section 5 summarizes the policy trie representa-
tion and discusses some areas of future research.

2. Firewall security policies

As previously described, a firewall security policy
has been traditionally defined as an ordered list of fire-
wall rules [23], as seen in table 1. A rule r can be
viewed as an ordered tuple of sets [22], for example
rule r = (r[1], r[2], ..., r[k]). Each tuple r[l] can be fully
specified or contain wildcards ‘*’ in standard prefix
format. For example the prefix 192.* would repre-
sent any IP address that has 192 as the first dotted-
decimal number. For TCP/IP networks, rules are rep-
resented as a 5-tuple as seen in table 1. The tuples for
TCP/IP are: protocol, IP source address, source port
number, IP destination address, and destination port
number. Order is necessary among the tuples since
comparing rules and packets requires the comparison
of corresponding tuples. In addition to the prefixes,
each firewall rule has an action, which is to accept or
deny. An accept action passes the packet into or from
the secure network, while deny causes the packet to be
discarded. Using the rule definition, a standard secu-
rity policy can be modeled as an ordered set (list) of
n rules, denoted as R = {r1, r2, ..., rn}.

Similar to a firewall rule, a packet (IP data-
gram) d can be viewed as an ordered k-tuple d =
(d[1], d[2], ..., d[k]); however, wildcards are not possible
for any packet tuple. An arriving packet d is sequen-
tially compared against each rule ri starting with the
first, until a match is found (d ⇒ ri) then the associ-
ated action is performed. This is referred to as a first-

2

match policy and is utilized by the majority of firewall
systems [19]. A match is found between a packet and
rule when every tuple of the packet is a proper subset
of the corresponding tuple in the rule.

Definition Packet d matches ri if

d ⇒ ri iff d[l] ⊆ ri[l], l = 1, ..., k

For example the packet d = (TCP, 140.1.1.1, 90,
130.1.1.1, 20) would match the first and the fifth
rules in table 1. However using the first match policy,
the packet would be accepted since the first rule is the
first match. Although the two rules match the same
packet and have different actions, it is important to
note that this is not considered an anomaly.

Shadowing is a type of anomaly, which occurs when
a rule ri+k matches a preceding rule ri, thus render-
ing ri+k obsolete. For example, assume the rule (UDP,
130.*, *, *, *, accept) was added to the end of
the policy given table 1. This new rule is shadowed by
the fifth rule (r6 ⇒ r5); thus, the new rule will never
be utilized. Security policy anomaly detection and cor-
rection is the subject of continued research [2, 15, 23]
and is not the focus of this paper. Therefore, this pa-
per will assume such filter conflicts are not present in
the security policies.

A security policy R is considered comprehensive if
for every possible legal packet d a match is found using
R. The policy given in table 1 is comprehensive due to
the last rule. Furthermore, we will say two rule lists R
and R′ are equivalent if for every possible legal packet d
the same action is performed by the two rule lists [11].
This definition will be extended to include different pol-
icy representations. As described in the introduction,
this paper is interested in improving network firewall
performance. Firewall performance will be measured
using the number of tuple-comparisons required to find
the first match. The worst case performance for a list-
based representation is k ·n tuple-compares, which oc-
curs when the last rule (default rule) is the first match.

3. A new security policy representation

In this section a new security policy representation
called the policy trie is introduced, which provides
faster processing of packets while maintaining the in-
tegrity of the original policy. The policy trie T is a
n-ary trie structure consisting of k levels that stores a
security policy. Each level T [l] corresponds to a rule
tuple (except for the root), while nodes on a certain
level store the tuple values T [l, v]. Unlike the standard
binary trie structure [1], the policy trie is unique since
a node can have multiple children, similar to an n-ary

root

TCP UDP * protocol

140.* 150.* 150.* * source IP

* * * * source port

130.* * 120.* * * destination IP

20 80 90 3030 * destination port

accept accept accept accept deny action

r1 r2 r3 r4 r5

Figure 1. Policy trie representation of the fire-
wall rules given in table 1.

tree. This is required since a node will store a rule tu-
ple (multibit field), not just a single bit as done in [20].
Tuples at each level are organized from specific to gen-
eral (reading left to right). For reference, levels will be
numbered sequentially starting with zero for the root
node. Likewise, nodes of a particular level will be num-
bered sequentially starting with zero for the left-most
node. Since each level stores a tuple, a path from the
root node to a leaf represents a firewall rule, as seen in
figure 1.

To create a policy trie T , rules are added in the order
they appear in R. A rule r is added to T by starting
with the root node on the first level and comparing
the values of its children with the corresponding tuple
of r. If one of the children is equal (not just a sub-
set) to the corresponding rule tuple, then r will share
this node and a new node is not added for this level.
The trie is traversed to that node and the process of
comparing children to the rule is repeated using the
next tuple in r. If an exact match does not exist, a
new child node is created that contains the value of
the corresponding packet tuple. In order to maintain
the specific-to-general organization of the trie, the new
node is inserted in the rightmost available position such
that it is before (to the left of) any sibling that is a su-
perset of the new node. The new node forms a chain
of nodes that stores the remaining tuple values of the
rule.

Consider the events that occur when rule r2 is added
to the trie given in figure 1. Rule r2 has the same proto-
col, IP source, and source port values as r1; therefore,
r2 will share these nodes. Since the destination IP is
different, this forms a chain consisting of this tuple,
the destination port, and action. This chain connects
to the source port node, which adds r2 to the trie. It
is this structure that allows the elimination of multiple

3

rules simultaneously. For example if a UDP packet is
compared using the trie given in figure 1, then rules
r1, r2, and r3 are eliminated after the protocol tuple
comparison.

Once the new rule is added, if any nodes exist to
the right of the new rule, then this represents a rule re-
order and may result in a shadowing. The intersection
of the new rule and each of these right-most rules is
taken [11] and the action of right rule, the rule that
appears first in the ordered policy, is applied.

Definition The intersection of rule ri and rj , denoted
as ri ∩ rj is

ri ∩ rj = (ri[l] ∩ rj [l]), l = 1, ..., k

For all intersections that yield valid rules, the results
form a subtree of the newly added rule. The same
method is applied to this subtree. For example consider
the rules given in figure 2(a). Note that the relative or-
der of the rules must be preserved; otherwise integrity
is not maintained. When r2 is added to the policy trie,
the source IP address will cause the rule to be placed
before r1 and the intersection must be taken. The in-
tersection of r1 and r2 is (UDP, 1.*, 80, 1.*, 90).
The result of the intersection indicates a packet can
match both rules, for example d = (UDP, 1.1.1.1,
80, 1.1.1.1, 90). Therefore this intersection rule,
with the action of r1, must be added to the trie. The
final policy trie is given in figure 2(b), which maintains
the integrity of the policy given in 2(a). When r3 is
added, it is located to the right of r1 and r2, thus in-
tersections are not performed. In this example rules r1

and r2 are considered a partial-match [2].
To process a packet d using the policy trie T (also re-

ferred to as searching T), the corresponding tuple of the
packet is compared with the children of the root node.
Comparisons of nodes are always performed from left
and right, or specific to general. Once a match is found,
the current node is marked and the trie is traversed to
the matching child. The procedure is repeated with
the remaining rule tuples. If no match is found, the
search backtracks to the parent node and finds the next
matching node that has not been visited, continuing
the process of left to right comparison. Once a path
has been found from the root node to a leaf where all
the rule tuples match (p[l] ⊆ T [l, i], l = 1, ..., k) the
associated action is performed.

3.1. Policy trie integrity

As previously stated, a necessary objective of any
policy representation is its ability to maintain the pol-
icy integrity. This occurs if the new representation is

equivalent to the original list-based policy. A policy
trie T is equivalent to the original security policy R for
any legal packet d, if searches of T and R result in the
same action being performed. Unlike other representa-
tions, this is proven true in [12].

Theorem 3.1 A policy trie T is equivalent to the orig-
inal security policy R.

3.2. Push-down policy tries

The policy trie as described thus far may require
backtracking when a packet is processed (search is per-
formed). Backtracking searches can have a worst-case
performance that is equal to a list representation [18].
Although the penalty for backtracking in an n-ary trie
is not as severe as a standard binary version, the con-
version to a non-backtracking trie can reduce the num-
ber of tuple-compares, which is the objective of the
representation.

A non-backtracking policy trie, referred to as a push-
down policy trie, is created by replicating, or pushing-
down general rules in the original policy [18]. A gen-
eral rule is a superset of at least one other rule in the
policy, and is defined as a range of values, containing
at least one wild-card in the standard prefix notation.
The push-down procedure replicates more general rules
in subset subtries that would match the same packets
as the general rule. As a result, the union of the push-
down rules is a proper subset of the original rule.

Definition The push-down of rule rg to rs, denoted
as rg ↓ rs is

rg ↓ rs = (rs[1, .., l], rg[(l + 1), ..., k], rg[action])

where the rg[i] = rs[i], i = 1, ..., (l − 1) and l is the
index of the first tuple of rs that is a subset of the
corresponding tuple in rg.

A general rule can only be pushed-down to rules
that appear to left of it in the trie. Furthermore, a
non-backtracking policy trie is created when all general
rules are pushed-down; therefore, rg ↓ rs, ∀s < g. This
can be easily implemented using a post-order traversal
of the policy trie. Note that while push-down always
creates a rule that is more specific than the general
rule being pushed, the resulting rule may still be a
superset of other rules in the policy trie, and thus must
be pushed down. For example, consider the push-down
policy trie given in figure 3. When rule r5 is pushed-
down to rule r1 it creates rule r6. This is a general rule
that is pushed-down again to rule r1 yielding r7. This
process repeats yielding r8, which cannot be pushed-
down further.

4

Source Destination
No. Proto. IP Port IP Port Action

1 UDP * 80 1.* 90 deny

2 UDP 1.* 80 * 90 accept

3 * * * * * deny

(a) Example rule list, where the rules must maintain
their relative order.

root

UDP *

1.* * *

80 80 *

1.* * 1.* *

90 90 90 *

deny accept deny deny

r1 ∩ r2 r2 r1 r3

(b) Policy trie that requires intersection of r1 and r2.

Figure 2. List and trie representation of a security policy where the policy trie requires the intersection
operation to maintain the integrity of the list.

As done with the original (backtracking) policy trie,
we must be certain that the integrity of the original pol-
icy is maintained when using a push-down policy trie.
Theorem 3.2 states that push-down and original pol-
icy tries are equivalent. Therefore it can be stated that
the push-down policy trie maintains integrity since, the
original policy trie was stated to do so in theorem 3.1
[12].

Theorem 3.2 A push-down policy trie Tp is equiva-
lent to the original policy trie T , which is equivalent to
the original security policy R.

3.3. Worst case analysis

As described in the previous section, the push-down
policy trie offers a performance increase by eliminating
the need to traverse backwards. In this section, the
worst case performance and storage requirement of the
push-down trie is analyzed theoretically. A primary
objective of the policy trie representation is to reduce
the number of tuple-comparisons required per packet.
Before this can be done, two important lemmas about
push-down policy tries are required [12].

Lemma 3.3 A node in a push-down policy trie cannot
have more than n (the number of rules) children.

Lemma 3.4 Each node traversal at a particular level
in a push-down policy trie eliminates at least one rule
from consideration.

The previous two lemmas provide important bounds
on the structure of any push-down policy trie. As a

result, the worst case number of tuple-comparisons is
O(n + k), which is stated in theorem 3.5. Comparing
this bound with the worst case for a list-based repre-
sentation, the push-down policy trie requires a fraction
(1/k) of the processing [12].

Theorem 3.5 A comprehensive push-down trie con-
sisting of k levels and constructed from n rules re-
quires O(n + k) number of tuple-comparisons to match
a packet in the worst case.

It is important to note that intersection and push-
down operations do increase the number of nodes in
the push-down trie, which increases the storage require-
ment. This is evident in the number of nodes required
for the push-down trie depicted in figure 3 as com-
pared to the original trie given in figure 1. Given an
n rule firewall policy, push-down causes the worst case
storage requirement to occur under two specific condi-
tions. The first condition is ri ⇒ rj , ∀i < j < n, a rule
matches all the rules that appear to the right, maximiz-
ing the number of push-downs that occur. The second
condition is ri[l] �= rj [l], ∀i < j < n, 1 ≤ l ≤ k; none of
the tuples are equal and nodes are never shared. How-
ever, the number of nodes required by the trie can be
greatly reduced by converting it into a Directed Acy-
cical Graph (DAG) [1, 18]. In the context of a DAG,
the push-down operation directly references nodes in-
stead of replicating them as in the policy trie. For
example, consider the push-down trie given in figure
3. The parents of the nodes labeled A and B could
point to the node labeled C, which eliminates the need
for new nodes for rules r6 and r11. The other push-
down rules can be replaced in a similar fashion. The

5

root

TCP UDP *

140.* 150.* *
A 150.* *

B
*

C

* * * * * *

130.* * 120.* * * * * *

20 * 80 * 90 * * * 3030 * * *

accept deny accept deny accept deny deny deny accept deny deny deny

r1
r8 =

r7 ↓ r1
r2

r7 =
r6 ↓ r1

r3
r10 =
r9 ↓ r3

r9 =
r6 ↓ r1

r6 =
r5 ↓ r1

r4
r12 =

r11 ↓ r4

r11 =
r5 ↓ r4

r5

Figure 3. Push-down policy trie representation of the firewall rules given in table 1.

DAG conversion causes the worst case push-down trie
to only require k · n tuples, which equals the storage
requirement for a list representation. The proof has
been omitted due to space limitations [12].

The intersection of two rules, required when rule re-
ordering occurs, may also result in a new rule (a new
combination of existing tuples). The worst case policy
would require the intersection among all rules to result
in a valid rule, where tuples of the new rule alternate
between the two rules. In addition, the rules would
have to be listed according to the first tuple from most
general to most specific. In this situation, intersection
operations result in chains. Therefore, the worst case
number of nodes required to store the policy trie would
be O(n2). Again, the proof has been omitted due to
space limitations. Although this is a higher space re-
quirement than the standard list representation, it only
occurs under very specific circumstances. Furthermore,
the significance of the additional space requirement is
relative to the frequency of the worst case packet(s).

4. Experimental results

The previous section described a new network se-
curity policy representation called a policy trie that
was shown to provide theoretically better performance
than the standard list-based representation. Simula-
tion results presented in this section will confirm the
worst case number of tuple-comparisons and show that
similar performance gains are achieved in the average
case. In addition, the average and worst case storage
requirements for the different policy representations are
presented and will be shown to remain well below their
theoretical bounds.

Simulations were conducted using list, backtrack-
ing trie (original trie), and push-down trie represen-
tations of firewall policies. A random rule generator

was used to create valid rule sets with a realistic de-
gree of rule intersection. The generator was set to allow
a slightly lower number of tuple permutations at high
levels (source, source port, etc.) so that the shape of
resulting policy tries would mirror those of real-world
firewall rule sets. Policy sizes ranged from 50 rules to
500 rules, where 50 different policies were generated per
policy size. Sets of 10,000 packets were passed through
representations of each policy and the resulting deci-
sions made were validated against the original rule set.
Statistics concerning the average and worst case num-
ber of tuple-comparisons were recorded as well as the
amount of storage required for each policy representa-
tion

4.1. Tuple-comparisons results

Results for the tuple-comparisons are given in figure
4. As expected, when the policy sizes increased, both
trie representations always performed considerably bet-
ter than the linear rule set. In all cases, each represen-
tation reached the same decision, indicating that they
were equivalent; thus maintaining integrity. As seen
in figure 4(a), the average performance for backtrack-
ing tries appears to be similar to that of push-down
tries. However, the backtracking trie required 5 times
as many comparisons on average than the push-down
trie, while the original list required 34 times as many
tuple-comparisons on average.

The variance for the average number of comparisons
in push-down tries was slightly lower than that of back-
tracking tries. As a result, push-down tries sometimes
performed significantly better than their backtracking
counterparts. Compared to linear implementations,
the variance of trie-based implementations was very
low and relatively constant. The standard deviation
of the average number of comparisons in either trie
implementation never rose above 20 per packet over

6

0 100 200 300 400 500
0

500

1000

1500

2000

2500

number of rules

nu
m

be
r

of
 tu

pl
e-

co
m

pa
ris

on
s

Average Number of Tuple-Comparisons

List
Backtracking trie
Push-down trie

(a) Average number of tuple-comparisons. Error bars represent
one standard deviation.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

number of rules

nu
m

be
r

of
 tu

pl
e-

co
m

pa
ris

on
s

Highest Number of Tuple-Comparisons

List

Backtracking trie

Push-down trie

List theoretical

Push-down theoretical

(b) Highest number of tuple-comparisons.

Figure 4. The average and worst case number of tuple-comparisons required for the firewall experi-
ments. Push-down trie provided the best performance in both cases.

10,000 packets. Though this number may seem signifi-
cant, the variance of linear policies averaged more than
46 comparisons and sometimes ranged as high as 100
comparisons.

The worst case number of tuple-comparisons re-
quired by each representation is given in figure 4(b).
Similar to the average case results, both trie representa-
tions out-performed the list representation. Compared
to the push-down trie the backtracking trie required
7 times as many of tuple-comparisons to reach a de-
cision in the worst case, while the list representation
required 31 times as many. In addition, the perfor-
mance of push-down tries and list representations were
within the theoretical bounds.

4.2. Storage results

The amount of storage required, measured in the
number of tuples, is depicted in figure 5. As predicted,
when policy sizes increased the backtracking tries con-
sistently used less (a third for these experiments) of
the storage required by the list representation. In con-
trast, the push-down tries required the most storage.
The push-down trie storage was nonlinear with respect
to the number of rules and on average required 10 times
as much storage as the backtracking trie. Furthermore,
the variance of push-down tries averaged over 1,000
nodes, while the variance of backtracking tries aver-
aged less than 50 nodes. Although the push-down trie

representation required the most storage, the observed
worst case requirement was well below the theoretical
upper bound of n2, requiring on average 92% fewer tu-
ples.

The amount of storage required by both trie rep-
resentations is directly related to the degree of rule
overlap. Backtracking tries benefit from rule overlap
because overlap results in a greater number of shared
nodes. In contrast, the storage requirement for push-
down tries improves when there are fewer subset re-
lations in a policy, since fewer push-down operations
occur.

5. Conclusions

Network firewalls must continue to match, or exceed,
the ever increasing speed and volume of network traffic
if they are to remain effective. Unfortunately, the tra-
ditional single machine firewall that utilizes a list-based
security policy can easily become overwhelmed in this
environment. Therefore, new methods to increase fire-
wall performance are needed to meet the demands of
the next generation of networks and applications.

This paper introduced a new firewall security policy
representation called the policy trie that maintains pol-
icy integrity while requiring significantly less processing
time. Rules are modeled as an ordered set of tuples,
allowing the precedence relationship between rules to
be maintained. The security policy is represented as

7

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

number of rules

nu
m

be
r

of
 tu

pl
es

 s
to

re
d

Average Amount of Storage Required

List
Backtracking trie
Push-down trie

(a) Average number of tuples stored. Error bars represent one
standard deviation.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

number of rules

nu
m

be
r

of
 tu

pl
es

 s
to

re
d

Highest Amount of Storage Required

List

Backtracking trie

Push-down trie

Push-down theoretical

(b) Highest number of tuples stored.

Figure 5. The average and worst case number of tuple stored for the firewall experiments. Backtrack-
ing trie required the least amount of storage in both cases.

an n-ary retrieval tree (trie), which combines the fast
search properties of a trie with the flexibility of a n-
ary tree. The policy trie stores similar rules together,
which the allows the elimination of multiples rules as a
packet is processed. This is in contrast to a standard
list-based representation, which can only consider rules
individually. This yields a worst case performance for
the policy trie that is only 1/k of a list representation,
where k is the number of tuples in a rule. Furthermore
unlike other representations, the policy trie maintains
the integrity of the original policy. The integrity and
performance improvement of the policy trie was proven
theoretically and demonstrated using simulation under
realistic conditions.

While the policy trie has shown great promise, more
research is needed to evaluate its ability to manage a
dynamic policy. In many cases, rules must be added
and removed over time to reflect the current security
status (for example, stateful firewalls used for connec-
tion tracking [23]). A simple solution would just recre-
ate the trie from the corresponding list-based policy
once a rule is removed. Another approach would tag
rules if they are the result of intersection or push-down
operations, which allows their quick removal if the cor-
responding original rule is removed. Another area of
research would investigate the average performance of
the firewall system. Possible methods for improving
the average case would involve sorting the trie nodes
based on match probabilities or reorganizing the tuple

order of the trie. This must be done while maintain-
ing the integrity of the policy, which is not a trivial
problem.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. Addison-Wesley, 1987.

[2] E. Al-Shaer and H. Hamed. Modeling and manage-
ment of firewall policies. IEEE Transactions on Net-
work and Service Management, 1(1), 2004.

[3] S. M. Bellovin and W. Cheswick. Network firewalls.
IEEE Communications Magazine, pages 50–57, Sept.
1994.

[4] C. Benecke. A parallel packet screen for high speed
networks. In Proceedings of the 15th Annual Computer
Security Applications Conference, 1999.

[5] M. Christiansen and E. Fleury. Using interval deci-
sion diagrams for packet filtering. Technical report,
BRICS, 2002.

[6] D. Decasper, Z. Dittia, G. Parulkar, and B. Plat-
tner. Router plugins: A software architecture for next-
generation routers. IEEE/ACM Transactions on Net-
working, 8(1), February 2000.

[7] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small forwarding tables for fast routing lookups. In
Proceedings of ACM SIGCOMM, pages 4 – 13, 1997.

[8] U. Ellermann and C. Benecke. Firewalls for ATM net-
works. In Proceedings of INFOSEC’COM, 1998.

[9] A. Feldmann and S. Muthukrishnan. Tradeoffs for
packet classification. In Proceedings of the IEEE IN-
FOCOM, pages 397 – 413, 2000.

8

[10] E. W. Fulp. Firewall architectures for high speed net-
works. Technical Report 20026, Wake Forest Univer-
sity Computer Science Department, 2002.

[11] E. W. Fulp. Optimization of firewall policies using
directed acyclical graphs. In Proceedings of the IEEE
Internet Management Conference, 2005.

[12] E. W. Fulp and S. J. Tarsa. Network firewall policy
tries. Technical Report 20049, Wake Forest University
Computer Science Department, 2004.

[13] R. Funke, A. Grote, and H.-U. Heiss. Performance
evaluation of firewalls in gigabit-networks. In Proceed-
ings of the Symposium on Performance Evaluation of
Computer and Telecommunication Systems, 1999.

[14] S. Goddard, R. Kieckhafer, and Y. Zhang. An unavail-
ability analysis of firewall sandwich configurations. In
Proceedings of the 6th IEEE Symposium on High As-
surance Systems Engineering, 2001.

[15] A. Hari, S. Suri, and G. Parulkar. Detecting and re-
solving packet filter conflicts. In Proceedings of IEEE
INFOCOM, pages 1203–1212, 2000.

[16] HiPAC. High performance packet classification.
http://www.hipac.org.

[17] O. Paul and M. Laurent. A full bandwidth ATM fire-
wall. In Proceedings of the 6th European Symposium
on Research in Computer Security ESORICS’2000,
2000.

[18] L. Qui, G. Varghese, and S. Suri. Fast firewall imple-
mentations for software and hardware-based routers.
In Proceedings of ACM SIGMETRICS, June 2001.

[19] V. P. Ranganath and D. Andresen. A set-based ap-
proach to packet classification. In Proceedings of the
IASTED International Conference on Parallel and
Distributed Computing and Systems, pages 889–894,
2003.

[20] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel.
Fast and scalable layer four switching. In Proceedings
of ACM SIGCOMM, pages 191–202, 1998.

[21] S. Suri and G. Varghese. Packet filtering in high speed
networks. In Proceedings of the Symposium on Dis-
crete Algorithms, pages 969 – 970, 1999.

[22] P. W. Zehna. Sets with Applications. Allyn and Bacon,
1966.

[23] R. L. Ziegler. Linux Firewalls. New Riders, second
edition, 2002.

9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

