From Mogi to Pokémon GO: Continuities and change in location-aware collection games

Christian Licoppe
I3-SES, CNRS, Telecom-Paristech, Université Paris-Saclay, France

Abstract
We compare here some features of the emerging uses of Pokémon GO with earlier, though less successful, location-aware collection games such as Mogi. While mobility patterns are relatively similar, Pokémon GO brings about a distinctive augmented-reality dimension to the game experience, though it does not harness the social networking power of such location-aware game platforms to the same extent as earlier games.

Keywords
augmented reality, collection games, encounters, locative media, mobile experience, mobile game, mobility

In the light of the current hype surrounding the release of a location-aware mobile version of Pokémon GO, one may question its novelty and innovation in the context of the decades of location-aware games. For this paper I will consider Pokémon GO in relation to Mogi—an augmented-reality (AR) mobile game invented by a French designer, Mathieu Castelli (then CEO of the startup Newtgames), and commercialized in Japan in the early 2000s. The comparison is made especially relevant by the fact that (a) Mogi was already a mobile-based, location-aware collection game, where players had to get close to virtual objects to capture them throughout Japan and build collections and (b) Mogi was a commercial game (as opposed to experimental ones) in Japan, even though it was little advertised and had limited success in that respect (with the number of active users...
in the low thousands). Drawing upon ethnographic studies conducted with my colleague Yoriko Inada on Mogi, I will reflect and contextualize Pokémon GO. Three points emerge from such a comparison—game-supported mobility, the use of AR, and the exploitation of the social networking potential of such locative mobile gaming platforms.

In the context of mobility, active Mogi players declared in interviews how they would routinely make detours in the course of their everyday trips to pick up nearby virtual objects they had detected on screen. They would design special trips to places where they thought they might find objects, alone or together with other players. Some of these “hunting expeditions” might be time consuming and could lead them quite far away, as well as to strange, unanticipated, and sometimes risky places. Finally, they also declared using the game a lot at night, even quite late in the night—for instance night-walking around their homes to capture whatever virtual items they could (Licoppe & Inada, 2006). In sum, much of the kind of game-related mobility described by the press and the social media with respect to Pokémon GO were already documented in the phenomenon of Mogi. Two differences should however be noted. First, in the Mogi case, the players could act on the objects, which led some of them to turn the digital game space into personal and collective, emotion-laden, and commemorative, territories (Licoppe & Inada, 2008), something which to the best of my knowledge is not supported (yet) by Pokémon GO.

Second, Pokémon GO is massively played throughout the world, so that the number of active users is higher than that of Mogi by an order of magnitude (and the game is played in several countries instead of just one). This, in turn, embedded Pokémon GO into people’s everyday dynamics, routines, and conversations—thus rendering the game-related mobility into a matter of public debate. This can be seen in the press articles discussing the risks of accidents related to a lack of attention or getting into dangerous, improper, or even forbidden places for the sake of picking up some rare Pokémon character (For an example, http://www.nytimes.com/2016/08/26/business/japan-driver-pokemon-go-kills-pedestrian.html.). With Pokémon GO, locative game use behavior becomes a public event, a matter for public regulation. It becomes so recognizable as a reason to congregate in urban public places that it may become a resource for political demonstrations. In short, while most of the game-related mobility observable with Pokémon GO has already been observed before, the sheer commercial scale of the game turns such mobile behavior into a new kind of issue.

With respect to game interfaces, when compared with earlier games, Pokémon GO adopts its own particular version of augmented reality, which could be qualified as “hyper-realistic,” even if it is still a bit crude in phenomenological terms. While Mogi involved maps centered on the players’ positions and figuring virtual items and other players nearby (Figure 1), Pokémon GO not only includes similar ego-centered cartographic representations (Figure 2), but also couples the game space with the smartphone camera, which enables users to see the environment through it, including the virtual artefacts, and to take pictures (Figure 3). Particularly playful and creative pictures of this sort are increasingly making their way into online social media streams.

A constitutive feature of mobile locative media experience is the way situations of use are “folded”: users may experience their environment both as mobile bodies and
through the screen and the locative media interface, both referring to the same “here-and-now” (Licoppe, 2016). A consequence of this is that users are particularly aware to the possibility of mismatches between these two different ways of experiencing the same spatio-temporal reality. In that respect, the augmented-reality features in Pokémon GO provide, as observed in Figure 3, for a kind of hyperrealism in the mediated access of players to their environments, which could be highly consequential in terms of the play experience. Such AR-based mobile locative games may thus be quite distinctive with respect to earlier, more conventional mobile locative media, and this needs to be documented by fine-grained, phenomenologically inclined, ethnographic studies of players in action.

Even early experimental location-aware games such as Blast Theory’s Uncle Roy All Around You (Benford et al., 2004) or commercial ones such as Mogi made visible other players in their game interfaces (see Figure 1). Allowing a player to see other players nearby on screen (such a mediated visibility usually being mutual)—and therefore enabling unplanned encounters between players which could play out both off screen and on screen—was a key orientation in the design of these early games (Licoppe & Guillot, 2004).
This design orientation provided for the development of various forms of encounters in urban public places, some of them quite specific, and all underpinned by a social norm which mobile locative media made particularly salient, namely that the on-screen
discovery of other players nearby made relevant a possible face-to-face encounter (Licoppe & Inada, 2010).

With respect to a collection game such as Mogi, a significant part of the game experience involved socializing with other players discovered on screen, notwithstanding the specific dangers of that, such as particular forms of “stalking” (Licoppe & Inada, 2009). Current versions of Pokémon GO appear to be lacking in that respect, for other players do not appear on screen in the game interfaces, only virtual artefacts. The comparison with Mogi and other games suggests a possible direction for the future development of a fully deployed AR-based location-aware Pokémon GO platform that would be able to harness the social networking potential of mobile locative media: introducing in the game interfaces with the possibility to identify other active players and communicate with them through the game platform.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Note
1. Players in the AR mode cannot really perceive themselves moving “around” the Pokémon characters, who do not simulate having “sides,” as would embodied figures. The feel is more that of a videogame than “vivid presence.” While occasional players seem to use the AR function to provide pictures for social media, very active players seem to turn this functionality off most of the time.

References


Author biography

Christian Licoppe is a Professor of Sociology in the Department of Social Science at Telecom Paristech in Paris. Trained in history and sociology of science and technology, he worked in industrial research, where he managed social science research at Orange R&D before taking his current academic position. Among other things, he has worked in the field of mobility and communication studies for several years. He has used mobile geolocation and communication data to analyze mobility and sociability patterns of mobile phone users. He has studied various phenomena related to the proliferation of mediated communication events and “connected presence.” He has also studied extensively the uses of location-aware games and proximity-aware mobile technologies communities. His recent work in mobile communication has focused on the development of methods to record and analyze the use of mobile communication in “natural” situations (such as mobility and transport settings) and on the use of ethnomethodology and conversation analysis to understand the organization of mobile communication as in Skype and mobile video calls.